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Modeling oscillatory microtubule polymerization

Martin Hammele and Walter Zimmermann
Theoretical Physics, University of Saarland, D-66041 Saarbru¨cken, Germany

~Received 1 October 2002; published 14 February 2003!

Polymerization of microtubules is ubiquitous in biological cells and under certain conditions it becomes
oscillatory in time. Here, simple reaction models are analyzed that capture such oscillations as well as the
length distribution of microtubules. We assume reaction conditions that are stationary over many oscillation
periods, and it is a Hopf bifurcation that leads to a persistent oscillatory microtubule polymerization in these
models. Analytical expressions are derived for the threshold of the bifurcation and the oscillation frequency in
terms of reaction rates, and typical trends of their parameter dependence are presented. Both, a catastrophe rate
that depends on the density of guanosine triphosphate liganded tubulin dimers and a delay reaction, such as the
depolymerization of shrinking microtubules or the decay of oligomers, support oscillations. For a tubulin dimer
concentration below the threshold, oscillatory microtubule polymerization occurs transiently on the route to a
stationary state, as shown by numerical solutions of the model equations. Close to threshold, a so-called
amplitude equation is derived and it is shown that the bifurcation to microtubule oscillations is supercritical.

DOI: 10.1103/PhysRevE.67.021903 PACS number~s!: 87.10.1e, 47.54.1r, 87.16.Ka, 87.17.Aa
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I. INTRODUCTION

Microtubules are cylindric filaments that are used in ce
for many different purposes, being vitally involved in ce
motility and division, organelle transport, and cell morph
genesis and organization@1#. The precise ways in which mi
crotubules achieve their amazing variety of cellular functio
is not fully understood yet. Microtubules in cells are gen
ally dynamic, they assemble, disassemble or rearrange
time scale of minutes. GTP~guanosine triphosphate! hy-
drolysis is apparently the driving force of microtubule phy
ology.

The rich nonequilibrium dynamics of microtubules, i
cluding nucleation, polymerization kinetics, etc.@2,3#, is at-
tracting considerable attention, both experimentally a
theoretically@4–18#. Two phenomena in this area, the d
namical instability of microtubules@4# and the oscillatory
polymerization@5–12#, have already challenged theoretic
modeling for a while@13–18#.

Oscillations during microtubule polymerization have be
observed either when GTP is regenerated enzymatically f
endogenous GDP~guanosine diphosphate! @5,7,9,11# or
when some amount of GTP is provided at the beginning
during an experiment. In the latter case, oscillations oc
only as a transient, because GTP is either consumed or s
reactions steps may be inhibited due to the accumulatio
GDP @8#. If both possibilities are combined, the length of
transient regime depends on the initial concentrations of G
and GDP and on the capacity to regenerate GTP. Pre
models for microtubule polymerization focus mainly on
description of transiently occurring oscillations, and the
lutions of the respective models are mostly numeri
@6,15,17#.

In recent in vitro experiments, however, the capacity
regenerate GTP has been enhanced and extended up to
eral hours@19#. Compared to a typical oscillation period du
ing microtubule polymerization, which is of the order of
min, the reaction conditions in these experiments are alm
quasistationary over a long range of time. Therefore we
1063-651X/2003/67~2!/021903~19!/$20.00 67 0219
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cus on modeling microtubule polymerization for tim
independent regeneration conditions. As a starting point
take common reduced models, where several elementary
cesses of the real biochemical reaction are described b
few effective reaction steps as explained in Sec. II, cf. Re
@6,7,15,17#. Reductions of complex chemical reactio
schemes are quite common, and a famous example is
so-called oregonator@20#, which is a reduced model for th
legendary Belousov-Zhabotinsky reaction@21#. However,
since microtubules are long filaments, there are essential
ferences between the polymerization of microtubule fi
ments and common chemical reactions. For instance, mi
tubules may undergo an orientational ordering transit
beyond a critical filament density@22#, a phenomenon tha
does not occur in common chemical reactions. According
the length distribution of microtubules is explicitly taken in
account for all variants of models investigated in this wo
Such models are the basis of future work on interest
pattern-formation phenomena related to the interplay
tween orientational ordering of filaments and the kinet
involved in filament growth@23#.

In addition, we focus on model variants that include t
possibility of an oscillatory microtubule polymerization an
that allow analytical approaches. However, the react
steps, such as nucleation, growth, and decay of microtub
or the rate limiting factors of oligomer decay or tubulin r
generation, which have been identified to be crucial for
cillations @5–8,11#, are taken into account. Moreover, we a
dress the question whether microtubule oscillations oc
transiently or in a persistent manner beyond a Hopf bifur
tion. Whether such a Hopf bifurcation takes place superc
cally or subcritically is investigated in terms of the so-call
amplitude expansion.

It is not a major goal of this work to achieve quantitativ
agreement between the results obtained with phenom
logical models and experimental measurements. Howe
since the present understanding of the mechanism leadin
oscillatory microtubule polymerization is incomplete, r
duced models may be an appropriate tool for working
©2003 The American Physical Society03-1
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typical trends that may be testable in experiments. For c
parison it is very helpful that, for reduced models, tren
may be worked out analytically and may be presented
simple formulas. A number of spatiotemporal phenomena
volving microtubule polymerization call for a better unde
standing too@10,24,25#, but also in this case, simple an
effective models are indispensable in order to keep the m
eling tractable@26#.

At the transition to oscillatory polymerization, the statio
ary state becomes sensitive against small perturbati
which grow or decay exponentially,}est. Here the exponen
tial factor s5s r6 ivc is the sum of the so-called growt
rate s r and the oscillation frequencyvcÞ0. Below the bi-
furcation point, the growth rates r,0 is negative and the
perturbations are damped. Beyond the bifurcation point,s r
is positive and the stationary polymerization state is unsta
against oscillatory perturbations. Hence the Hopf bifurcat
to oscillatory polymerization takes place when the real p
s r of both roots passes zero. The investigation of the po
merization dynamics beyond the Hopf bifurcation requires
most cases a numerical analysis of the basic reaction e
tions. However, close to threshold,s r is small and the oscil-
lation of the polymerization, described by the real part
eivct, is much faster than the temporal evolution of the co
plex valued amplitudeA(t) of the oscillations. Therefore th
oscillation may be written as a product of both factors, i
}A(t)eivct, and there is a very general approach, the
called amplitude expansion, for separating the dynamic
these two disparate time scales@27,28#. The amplitude equa
tion describing the evolution of the amplitudeA(t) is ob-
tained by a perturbation expansion of the reaction equat
with respect to the slowly varying amplitudeA(t), and it is
of the form

t0] tA5«~11 ia !A2g~11 ic !uAu2A. ~1!

The control parameter« measures the relative distance fro
the bifurcation point andt0 is the relaxation time defined b
t05«/s r , which depends on the system. If the coefficieng
of the nonlinear term is positive, the bifurcation to the osc
latory state is supercritical and if it is negative, the bifurc
tion is subcritical. The imaginary parts of the prefactors d
scribe the linear and nonlinear frequency dispersi
Especially about the extension Eq.~1! including spatial de-
grees of freedom, there exists a rich literature as sum
rized, e.g., in a recent review@29#. Here, we calculate the
coefficients of the universal equation~1! for microtubule po-
lymerization and we discuss their variation in terms of re
tion rates.

In Sec. II we describe the main steps of the reaction cy
for microtubule polymerization, and the respective equati
for two models are presented. The time-independent s
tions for the stationary polymerization are given for bo
models analytically in Sec. III. Those become unsta
against oscillatory perturbations in the range of high tubu
dimer density. The respective linear stability analysis and
derivation of the oscillation threshold are given in Sec.
including their dependence on the reaction parameters. R
ers who are mainly interested in numerical results about
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oscillation threshold may proceed directly to Sec. IV A
The partial differential equations for growing and shrinkin
microtubules are of first order in the length of the microt
bules and first order in time. Their straightforward discre
zation and numerical solution has to be considered with c
therefore a stable numerical scheme, which becomes e
close to the threshold of the Hopf bifurcation, is described
Sec. V. The derivation of the universal equation~1! is out-
lined in Sec. VI, whereas the technical details are given
the Appendix. With a summary and an outlook about mo
eling microtubule polymerization, we conclude this work
Sec. VII.

II. MODELS FOR MICROTUBULE POLYMERIZATION

Microtubule assembly and disassembly proceeds in s
eral steps@1–3,5,7,8#. Aggregation of GTP liganded tubulin
dimers, the so-called tubulin-t, to microtubules is started by
heating up tubulin solutions to a temperature of ab
30–37 °C in the presence of GTP. Then microtubules sp
taneously nucleate and polymerize to long rigid polym
made up ofa-b tubulin dimers. An increasing number o
long microtubules in a solvent causes an increasing turbid
and the amount of polymerized tubulin-t may be monitored
by measuring this turbidity@6# or by x-ray scattering@8#. The
nucleation of microtubules is a rather complex process an
is still a matter of debate whether the nucleation rate depe
in experiments only on the initial concentration of tubulin-t,
ct , or during the polymerization on the temporally varyin
ct @3,30#. But once microtubules are formed, they grow a
the available tubulin-t dimers will be used up. The growth
velocity of microtubules,vg , is rather sensitive to tempera
ture variations, but rather independent ofct @30,31#. Growing
microtubules may change their states to rapidly depolym
izing ones by the so-calledcatastropherate f cat . In previous
works for the catastrophe rate, mostly an exponential dep
dence on the tubulin-t concentration was assumed, i.e.,f cat
;exp(2ct /cf) with some constantcf @6,15#. Once microtu-
bules have changed from growth to shrinking, they shr
rather quickly with a large velocityvs@vg .

During the depolymerization of microtubules they a
fragmented into oligomers or directly into GDP liganded t
bulin dimers, the so-called tubulin-d dimers. The oligomers
themselves are believed to fragment further into tubulind
dimers and the decay rate depends on the free GTP and G
Oligomers are stabilized by GDP and destabilized by G
@8,11#. If an excess of GTP is available, then tubulin-d in
solution will exchange its unit of GDP for GTP and ea
tubulin-t dimer resulting from such an exchange step is id
tical to the initial tubulin-t dimer. Such a regeneration ste
completes the whole microtubule polymerization cycle. I
continuous source of GTP is provided, for instance, by
regeneration process, this cycling may be continued ove
long time @19#. The variation of the reaction rates of th
polymerization cycle with the concentrationct may depend
on the specific experiment.

There are rather detailed models available to describe
reaction cycle of microtubule polymerization, see, e.g., R
@15#. As a simplification of this complex biochemical rea
3-2
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tion we only take into account as rate limiting factors one
the two intermediate steps of the polymerization cycle, eit
the dynamics of shrinking microtubules~upper cycle in Fig.
1! or the decay dynamics of oligomers~lower cycle in Fig.
1!. Without both rate limiting factors there are no microt
bule oscillations, but one is sufficient for oscillations. T
two simplified reaction schemes, as sketched in Fig. 1,
analyzed in detail in this work.

A. Dynamics of growing microtubules

During microtubule polymerization there are many gro
ing filaments in a unit volume and their length distributio
may be described by a length- and time-dependent func
pg( l ,t), whose detailed form varies with the experimen
conditions. A simple model for the dynamics of distributio
of growing microtubulespg( l ,t) is described by the follow-
ing first-order differential equation@13,14#:

] tpg52 f catpg2vg

]pg

] l
. ~2!

f cat describes either the transition from the growing to t
shrinking state of microtubules~model I! or the decay of

FIG. 1. Two models for the cycle of microtubule polymeriz
tion. Model I ~upper cycle!: Tubulin-t dimers may spontaneousl
form nuclei of microtubules that grow further by incorporatin
tubulin-t dimers. A growing microtubule may also change its st
to a quickly depolymerizing one by the so-calledcatastropherate
f cat , but it may also change back to the polymerizing state b
so-called and rather smallrescuerate f resc. Tubulin-d dimers are
released during this microtubule depolymerization, and the wh
cycle becomes closed by regenerating them at a ratea back to
tubulin-t dimers. Model II~lower cycle!: Here the intermediate ste
of shrinking microtubules is replaced by oligomers, e.g., micro
bules break off with a ratef cat directly into oligomers and the
oligomers themselves may break off with the ratex into tubulin-d
dimers. The rest of the cycle is identical to the upper cycle.
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growing microtubules into oligomers~model II!. vg is the
growth velocity of the microtubules.

1. Growth velocity and catastrophe rate

In recent experiments with high tubulin-t concentration,
the growth velocityvg was rather independent ofct @30#.
Since we are mainly interested in the oscillatory behavior
microtubule polymerization, which occurs at highct concen-
trations, we assume a constantvg in this work. In most of the
present models, act –dependent catastrophe ratef cat is cru-
cial for the oscillatory polymerization of microtubules
Rather common is an exponentialct dependence@15#

f cat~ct!5 f e2ct /cf , ~3!

with the amplitudef and the decay constantcf . However,
also a linearct dependence

f cat~ct!5 f̄ ~cu2ct! ~4!

with an appropriate constantcu.ct leads to an oscillatory
microtubule polymerization, as we show in Sec. IV A.
hyperbolicct dependence off cat , as discussed in Ref.@16#,
also supports oscillating polymerization.

2. Nucleation and boundary conditions

The nucleation process of microtubules is rather comp
and has been investigated in greater detail in Refs.@12,31,32#
recently. The nucleation raten depends on the initial concen
tration c0 of tubulin dimers, but it is rather independent
the temporal variation ofct , as observed in recent exper
ments@30,3#. Accordingly, for a given initial concentration
c0 we assume a constant nucleation raten. The nucleation
raten itself defines a boundary condition for the length d
tribution of growing microtubules,pg( l ,t), at l 50,

pg~ l 50,t !5
n

vg
. ~5!

B. Model I includes the dynamics of shrinking microtubules

In model I we take into account, as an intermediate s
between growing microtubules and tubulin-d dimers, the dy-
namics of shrinking microtubules,ps( l ,t). Here the catastro-
phe ratef cat describes the transition of microtubules fro
the growing to the shrinking state. The depolymerizati
speedvs of shrinking microtubules,ps( l ,t), is mostly much
larger than the growth velocityvg . Having microtubules in
two different states, one may also expect a transition fr
the shrinking back to the growing state, as described b
rate f resc. So one has two coupled equations for the grow
and shrinking microtubules@13,14#:

] tpg52 f catpg1 f rescps2vg] l pg , ~6a!

] tps5 f catpg2 f rescps1vs] l ps . ~6b!
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The rescue ratef resc, however, is usually very small in ex
periments and, therefore, it is neglected in this work. T
boundary condition for shrinking microtubules is

ps~ l→`,t !50, ~7!

because the transition from growing to shrinking micro
bules is the only source for the shrinking ones andpg( l
→`,t) vanishes for large values ofl.

The temporal evolution of the concentration of t
tubulin-t dimers,ct , and tubulin-d dimers,cd , is described
by two equations as follows:

] tct52gvgE
0

`

dlpg~ l ,t !1acd , ~8a!

] tcd5gvsE
0

`

dlps~ l ,t !2acd . ~8b!

The first term in Eq.~8a! describes the consumption o
tubulin-t during the polymerization~growth! of microtubules
and g is a length factor describing the number of tubu
dimers that are incorporated in a unit length of microtubul
ct is regenerated fromcd by exchanging the unit GDP fo
GTP, and this regeneration process, described by the rata,
occurs in Eq.~8a! as a source and in Eq.~8b! as a sink.
Tubulin-d dimers are released during the depolymerizat
of microtubulesps( l ,t) and this source is described by th
integral in Eq.~8b!.

Tubulin dimers may be a constituent of growing
shrinking microtubules, or they carry GTP or GDP as sin
dimers, but altogether they are conserved as expressed b
condition

ct1cd1gL5c0 . ~9!

Herec0 describes the overall concentration of tubulin dime
andL(t) is the integrated length of all microtubules per u
volume,

L~ t !5E
0

`

dll @pg~ l ,t !1ps~ l ,t !#. ~10!

The tubulin-d concentrationcd may be eliminated from Eq
~8a! by using the conservation condition~9!. On the other
hand, Eq.~9! in combination with Eqs.~6! and~8a! yields an
equation that is identical to Eq.~8b!. Hence Eqs.~6a! and
~6b! together with

] tct52gE
0

`

dl@vgpg1a l ~pg1ps!#1a~c02ct! ~11!

describe the polymerization dynamics of microtubules
model I, whereby a constant growth and shrinking velocity
assumed in this work.
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1. Rescaling of model I

After rescaling timet and lengthl, i.e.,

t85at, l 85
a

vg
l , ~12!

it is easy to see that model I may be characterized by a se
dimensionless parameters

g
vg

a
,

vs

vg
,

n

a
,

c0

cf
,

f resc

a
. ~13!

Some of these dimensionless quantities may be further c
bined to other dimensionless parameters as, for instanc
the threshold condition given in Sec. IV A.

2. Reduced model

Since the depolymerization velocityvs is much larger
than the growth velocityvg one may also consider the lim
vs@vg . In this case the shrinking microtubules decompo
nearly instantaneously into tubulin-d dimers, and growing
microtubules decay effectively, due to the short life time
the shrinking microtubules, into tubulin-d dimers. In order to
describe this direct decay, the source term in Eq.~8b!,
gvs*0

`dlps( l ,t), must be replaced byg f cat*0
`dl l pg( l ,t).

Eliminating again the densitycd , one ends up with a reduce
model for only two densities:

] tpg52 f catpg2vg] l pg , ~14a!

] tct52gE
0

`

dl~vg1a l !pg1a~c02ct!. ~14b!

This simplified model reproduces essential aspects of the
tionary polymerization of microtubules as described in S
III.

C. Model II includes the dynamics of oligomers

Oligomers occur as an intermediate product during
decay of microtubules and they are made of several tub
dimers. This intermediate product is ignored in model I. He
in model II, after the so-called catastrophe, we ignore
dynamics of shrinking microtubules as an intermediate s
and instead we take into account the~decay! dynamics of
oligomers. Therefore, the catastrophe ratef cat in Eq. ~2! de-
scribes for model II a direct transition of growing microtu
bules into oligomers. Furthermore, it is assumed that oli
mers decay with the ratex into tubulin-d dimers. The
concentration of oligomers is denoted bycoli , and its dy-
namics as well as that ofcd are described by the two equa
tions

] tcoli5h f catE
0

`

dl l pg~ l ,t !2xcoli , ~15a!

] tcd5xlcoli2acd . ~15b!
3-4
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h is a measure for the number of oligomers per unit length
the microtubules andl is a measure for the number of tub
lin dimers per oligomer. Oligomers decaying with the ratex
build a source term in the equation for tubulin-d dimers in
Eq. ~15b!.

The conservation law for the concentration of all tubu
dimers takes the form

ct1cd1lcoli1hlE
0

`

dl lpg~ l ,t !5c0 . ~16!

The equation for the growing microtubules is the same as
model I, cf. Eq.~2!, but in the equation forct , cf. Eq. ~8a!,
one has to replace the length factorg by the producthl.
Eliminating coli , model II is described by Eqs.~2! and ~8a!
together with the following dynamical equation forcd :

] tcd5xS c02ct2cd2hlE
0

`

dl lpgD 2acd . ~17!

As a boundary condition for the growing microtubules, w
again use Eq.~5! with a constant nucleation raten. For
model II we only consider the catastrophe rate given in
~3!. This again guarantees a nonlinear feedback of the
namics of the tubulin-t dimers to the dynamics of the grow
ing microtubules.

Reduced model

Similar to model I, model II also becomes identical to t
model described by Eqs.~14! in the limit x→`. If we as-
sume a very fast dissociation of oligomers into tubulind
dimers,x@1, we can neglect the intermediate statecoli . In
this case the source term in Eq.~15b!, xlcoli , can be re-
placed by the source in Eq.~15a!, cf. hl f cat*0

` dl l pg ,
which describes the direct decay of growing microtubu
into tubulin-d dimers. After replacingcd and settingg
5hl in Eq. ~8a!, we again obtain with the help of the con
servation law~16! the simple reduced model as described
Eqs.~14!.

III. STATIONARY SOLUTIONS

A polymerization cycle with a stationary length distrib
tion of microtubules and time-independent dimer concen
tions ct , cd or oligomer concentrationcoli are one type of
solutions of the model equations described in Sec. II. For
stationary state, the various polymerization steps, such
nucleation, assembly and disassembly of microtubules
well as the regeneration of tubulin-d dimers are in a balance
state. Under certain conditions a stationary polymerizatio
observed in experiments@31#. However, it may become un
stable against oscillatory perturbations if the initial tubu
dimer concentrationc0 is large enough, as shown in Sec. I

A. Model I

Equations~6! are first-order linear differential equation
with respect to the lengthl, and in the stationary case the
02190
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equations have exponentially decaying solutions, which t
in the limit of a vanishing rescue rate the form

pg,s
(0)~ l !5

n

vg,s
expS 2

f cat
(0)

vg
l D . ~18!

The catastrophe ratef cat
(0) may be given either by Eq.~3! or

Eq. ~4! but in both cases the stationary tubulin-t concentra-
tion, denoted byct

(0) , is determined self-consistently as d
scribed below. The stationary solutionspg,s

(0) allow an analyti-
cal calculation of the integrals in Eq.~11!, and a nonlinear
equation inct

(0) follows:

c02ct
(0)5

ngvg

f cat
(0) S 1

a
1

1

f cat
(0) ~11b!D . ~19!

From this equation the stationary tubulin concentrationct
(0)

can be determined as a function of the overall concentra
of tubulin dimersc0 and as a function of the other param
eters. In Eq.~19! the abbreviation for the velocity ratio

b5
vg

vs
~20!

has been introduced, and the respective length distribut
pg

(0) and ps
(0) follow for a given value ofct

(0) via Eqs.~18!.
The stationary valuect

(0) for the reduced model, described b
Eqs.~14!, follows from Eq.~19! in the limit b→0.

In the range ofa much larger than the catastrophe ra
f cat

(0) , the stationary tubulin-t concentrationct
(0) becomes in-

dependent of it, because all tubulin-d dimers that are re-
leased during the depolymerization, are immediately reg
erated to tubulin-t dimers. Both a large nucleation raten and
a large growth velocityvg lead to a high consumption o
tubulin-t and, therefore, to a lower stationary concentrat
ct

(0) . This tendency is illustrated by the difference betwe
the two curves in Fig. 2. On the other hand, large values
the amplitude of the respective catastrophe rate, eitherf or f̄ ,

FIG. 2. The tubulin-t concentrationct
(0) for the stationary poly-

merization state of model I is shown as a function of the regen
tion ratea and for two different values of the nucleation raten. The
velocity ratio between the growing and shrinking microtubu
is b5vg /vs50.1 and the rest of the parameters arec05120,
vg50.1, cf53, f 50.1, g51.
3-5
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act against long microtubules, which consist of many tubu
dimers and, therefore, enhance the densitiesct

(0) and cd
(0) .

The length distribution of the growing respective shrinki
microtubules is determined byvg / f cat

(0) , which also depends
via the catastrophe rate on the concentrationct

(0) .
These tendencies become even more obvious if the lin

dependence of the catastrophe rate in Eq.~4! is chosen for
the special casecu5c0 and Eq.~19! is expanded in the limit
of small and large values ofa. In both cases, we obtain th
simple formulas

ct
(0)5c02S ngvg~11b!

f̄
D 1/3

~a@ f̄ !, ~21a!

ct
(0)5c02S ngvg

a f̄
D 1/2

~a! f̄ !, ~21b!

which reflect the described tendencies.

B. Model II

Stationary solutions for model II can be calculated in
similar manner as discussed in the preceding section
model I. The length distribution of growing microtubules
again given by Eq.~18! and the integral in Eq.~17! can be
calculated analytically.cd may be eliminated from Eq.~17!

by using Eq.~8a! with ċt50 and by settingg5hl. Then the
nonlinear equation for tubulin-t dimersct

(0) takes the form

c02ct
(0)5

nhlvg

f cat
(0) S 1

a
1

1

x
1

1

f cat
(0)D . ~22!

Equation~22! is invariant under the permutationa↔x. If a
and x become much larger than the catastrophe rate,
stationary concentrationct

(0) becomes rather independent
both. In the limitsvs→` in Eq. ~19! andx→` in Eq. ~22!,
we again obtain the concentrationct

(0) for the reduced model
No stationary solution is possible in the limitx→0, because
in this limit all tubulin-d dimers are stored in oligomers an
the polymerization cycle becomes interrupted.

IV. THRESHOLD FOR OSCILLATORY POLYMERIZATION

Stationary microtubule polymerization becomes unsta
against oscillating modes in the range of high tubulin dim
concentrationsc0, and the parameter range where this ha
pens is calculated by a linear stability analysis. Starting fr
the model equations given in Sec. II, we derive linear eq
tions for small perturbations with respect to the station
state, and such perturbations exhibit an exponential time
pendenceest. For the exponential factors, we derive a non-
linear equation from which both the critical dimer concent
tion c0c and the critical frequencyvc for the Hopf
bifurcation are calculated numerically for various parame
combinations and in limiting cases also analytically.
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A. Model I

We introduce small perturbationspg,s
(1) and ct

(1) with re-
spect to the stationary solutionspg,s

(0) andct
(0) as determined

in the preceding section. With the ansatz

pg,s5pg,s
(0)1pg,s

(1) , ~23a!

ct5ct
(0)1ct

(1) , ~23b!

one obtains, after linearization of Eqs.~6! and ~11!, the fol-
lowing set of linear equations describing the dynamics of
perturbations:

] tpg
(1)52~ f cat

(0)1vg] l !pg
(1)2pg

(0)f cat
(1) , ~24a!

] tps
(1)5vs] l ps

(1)1 f cat
(0)pg

(1)1pg
(0)f cat

(1) , ~24b!

] tct
(1)52act

(1)2gE
0

`

dl@vgpg
(1)1a l ~pg

(1)1ps
(1)!#.

~24c!

Here, f cat
(1) is the first-order contribution of an expansion

the catastrophe ratef cat5 f cat
(0)1 f cat

(1)1••• with respect to the
perturbationct

(1) :

f cat
(1)52 f cat

(0)
ct

(1)

cf
. ~25!

Since the first-order linear equations~24! have constant co-
efficients, their solutions depend exponentially on time a
ct

(1) may be written as

ct
(1)5Aest1c.c. ~26!

~c.c. denotes the complex conjugate!. With this ansatz the
three equations in Eq.~24! can easily be integrated and th
solutions for the growing and shrinking microtubules a
given by

pg
(1)52

n f cat
(0)

vgcfs
expS st2

f cat
(0)

vg
l D FexpS 2

s

vg
l D21GA1c.c.,

~27a!

ps
(1)52

n f cat
(0)

vscfs
expS st2

f cat
(0)

vg
l D Fk1expS 2

s

vg
l D1k2

1K expS s

vs
l D GA1c.c. ~27b!

Herein, we have introduced the abbreviations

k15
f cat

(0)

s~11b!1 f cat
(0)

,

k25
s2 f cat

(0)

f cat
(0)1sb

, ~28!
3-6
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and the boundary condition in Eq.~7! requires a vanishing
integration constantK50. The boundary condition for the
time-dependent part of the growing microtubules,pg

(1)( l
50,t)50, is also fulfilled. According to the analytic expre
sions forpg

(1) andps
(1) given in Eqs.~27! both may be elimi-

nated in Eq.~24c!. The remaining integral in Eq.~24c! can
be calculated analytically and the nonlinear dispersion r
tion for s follows:

11s~s1a!G1
a

f cat
(0) S 11b

f cat
(0)2s

f cat
(0)1sb

D 2
f cat

(0)

f cat
(0)1s

3F11
a

f cat
(0)1s

S 11b
f cat

(0)

f cat
(0)1s~11b!

D G
50, ~29!

with a reduced parameter

G5
cf

gnvg
~30!

for the catastrophe rate given in Eq.~3! and with

G5
f cat

(0)

f̄ gnvg

~31!

for the rate given in Eq.~4!. After a few rearrangements, th
dispersion relation in Eq.~29! can be written as a fourth
order polynomial ins,

s4Gb~11b!1s3G@ab~11b!1 f cat
(0)~113b1b2!#

1s2@Ga f cat
(0)~113b1b2!1~b12G fcat

(0)2!~11b!#

1s@a~11b!~11b12G fcat
(0)2!1G fcat

(0)31 f cat
(0)

3~112b!#1a f cat
(0)@212b1G fcat

(0)2#1 f cat
(0)250.

~32!

This polynomial describes the linear stability of the statio
ary solutions given by Eqs.~18! and ~19! completely and
they are unstable in the parameter range where thegrowth
rate becomes positive, Re(s).0. Keeping, for instance, al
parameters besides the dimer concentrationc0 fixed, theneu-
tral stability condition Re(s)50 provides an equation fo
the critical dimer concentrationc0c . For concentrations
larger than this critical value,c0.c0c , the stationary solu-
tions are unstable.

The smallest critical dimer concentrationsc0c for an os-
cillatory polymerization are required if the parametersa, b,
andG take intermediate values, as discussed in greater d
below. At the threshold, the real part Re(s)50 vanishes and
the imaginary part ofs is the so-called Hopf frequencyvc
5Im(s). In this special case with a purely imaginarys, the
polynomial in Eq.~32! can be decomposed into its real a
imaginary parts, giving two coupled equations for the de
02190
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mination of the two unknownsf cat
(0) and vc . Having deter-

mined f cat
(0) numerically,c0c may be calculated via Eq.~19!.

1. Limiting cases for the rate in Eq. (3)

For the limiting casesb→0, b→`, a→0, anda→`,
analytical expressions can be given for both the thresh
concentrationc0c and the Hopf frequencyvc . This is ex-
plained first for the catastrophe rate given by Eq.~3! and for
the parameterG given in Eq.~30!. At threshold, one hass
5 ivc and two equations follow from the nonlinear dispe
sion relation in Eq.~32! which determine the two unknown
vc and f cat

(0) . The critical initial concentrationc0c follows via
f cat

(0) from Eq. ~19!.
~a! a→`. In this limit one obtains from Eq.~32!

f cat
(0)5

1

aG

11b

11b1b2
, ~33a!

vc5A11b

Gb
. ~33b!

Accordingly the critical tubulin concentration diverges
c0c}a2, which agrees with the full numerical results show
in Fig. 3, besides small logarithmic corrections. In this lim
the Hopf frequencyvc becomes independent ofa and with
increasing values ofb it decreases slightly to a consta
valuevc;A1/G.

~b! a→0. In this casevc;A1/G also becomes indepen
dent of a and the catastrophe rate vanishes asf cat

(0);a.
Therefore the critical tubulin concentration diverges acco
ing to Eq.~19! asc0c;a22.

FIG. 3. The critical tubulin dimer concentrationc0c and the
critical oscillation frequencyvc are given at the threshold of th
Hopf bifurcation as functions of the regeneration ratea, for two
values ofb5vg /vs and for the constantG53000. The catastrophe
rate given in Eq.~3! has been used with the parameter valuesf
50.1 andcf53.
3-7
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~c! b→0. In this limit, one obtains

f cat
(0)5Ab

G
and vc5S a2

G D 1/4S 1

b D 1/4

. ~34!

The Hopf frequency diverges with increasing values of
shrinking velocity asvc;vs

1/4, in agreement with the nu
merical results shown in Fig. 4. With this expression
f cat

(0) , one obtains, via Eq.~19! for the critical initial concen-
tration, c0c;G/b1cf ln@f(G/b)1/2#. For medium paramete
values, this is essentiallyc0c}1/b as indicated in Fig. 4.

In experiments, the shrinking velocity was always larg
than the growth velocity, therefore the limitb→` is dis-
carded.

2. Limiting cases for the rate in Eq. (4)

The tendencies for the parameter dependence of
threshold for the Hopf bifurcation as discussed in S
IV A 1 are by far not a special property of the choice of t
catastrophe rate in Eq.~3!. Therefore we consider the sam
limiting cases as before for the catastrophe rate given in
~4! and withG as defined in Eq.~31!.

~a! a→`. In this limit one obtains from Eq.~32!

f cat
(0)5S g~11b!

a~11b1b2!
D 1/2

, ~35a!

vc5
@ag~11b1b2!~11b!#1/4

b1/2
, ~35b!

FIG. 4. The critical tubulin concentrationc0c and the frequency
vc are given at the Hopf bifurcation as functions of the ratio b
tween the shrinking and growth velocity of microtubules,vs /vg

5b21, for a50.05 and for two different values ofG. The ct de-
pendence of the catastrophe rate as given in Eq.~3! has been used
with the same parameters as in Fig. 3.
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with g5 f̄ gnvg . Hence the critical tubulin concentration re
quired for a Hopf bifurcation diverges asc0c}a.

~b! a→0. In this limit one hasf cat
(0)}a, and c0c}a22

diverges too.
~c! b→0. For this limit, we obtain

f cat
(0)5~gb!1/3, ~36a!

vc5g1/6a1/2S 1

b D 1/3

. ~36b!

This confirms the importance of a finite ratio ofb5vg /vs ,
because the threshold diverges forb→0, similar to the ca-
tastrophe rate given in Eq.~3!.

3. Traveling waves solutions

At the threshold of the Hopf bifurcation, the rates is
purely imaginary,s5 ivc , and the expressions given in Eq
~26! and ~27! are oscillatory in time,

ct
(1)52A cos~vct !, ~37a!

pg
(1)5

S1

vg
expS 2

f cat
(0)

vg
l D @sin~vct !2sin$vc~ t2 l /vg!%#,

~37b!

ps
(1)52

S1

vs
expS 2

f cat
(0)

vg
l D @k2 sin~vct1w2!

1k1sin$vc~ t2 l /vg!1w1%#, ~37c!

whereby the following abbreviations for the amplitudes,

S15
2An f cat

(0)

vccf
, ~38a!

k15
Af cat

(0)41vc
2f cat

(0)2~11b!2

f cat
(0)21vc

2~11b!2
, ~38b!

k25
A~vc

2b2 f cat
(0)2!21 f cat

(0)2vc
2~11b!2

f cat
(0)21~vcb!2

, ~38c!

and phases,

w152arctanS vc~11b!

f cat
(0) D , ~39a!

w25arctanS vcf cat
(0)~11b!

bvc
22 f cat

(0)2 D , ~39b!

have been introduced. The analytical expressions forpg
(1) and

ps
(1) indicate that the time-dependent contribution to t

length distribution of the microtubules includes homog
neous amplitude oscillations and waves with a wavelen
vc /vg that travel to larger values of the lengthl. Hence, the
length distributionspg,s

(1) depend on two different length

-

3-8
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scales, the decay lengthvg / f cat
(0) and the wavelengthvg /vc

of the traveling waves. With the explicit solutions forct
(1)

and pg
(1) , the phase of the oscillating part of the tubulind

concentration relative to the phase ofct
(1) as well as its os-

cillation amplitude is calculated via Eq.~8a!.

4. Numerical results for the threshold of model I

Since s is purely imaginary at the threshold of a Ho
bifurcation,s5 ivc , the dispersion relation in Eq.~32! can
be decomposed into its real and imaginary parts, and f
these two equations the critical concentrationc0c and the
frequencyvc may be calculated numerically as a function
the parameters. The numerical calculations in this section
restricted to the exponential tubulin dependence of the ca
trophe rate as given by Eq.~3!.

The critical tubulin dimer concentrationc0c and the criti-
cal frequencyvc at the Hopf bifurcation are shown in Fig.
as functions of the regeneration ratea and in Fig. 4 as func-
tions of the velocity ratio 1/b5vs /vg , whereby the reduced
parameterG has been chosen at the valuesG53000 andG
5300, respectively. SinceG includes a number of param
eters, the curves in both figures represent a larger param
set. In the limit of a vanishing regeneration and in the lim
of very large values ofa, where the regeneration process
much faster than any other process, the critical tubulin c
centrationc0c diverges and, therefore, the Hopf bifurcation
suppressed. In addition, both figures indicate that the sm
est values of the critical tubulin concentrationc0c are ob-
tained at intermediate values of the parametersa, b, andG.
The location of the threshold minima, however, depends
the actual values of the rest of the parameters. The freque
vc becomes rather small in the limita→0, and for large
values ofa, this frequency becomes independent of it,
Sec. IV A 1.

In Fig. 4 the threshold minimum is less pronounced th
in Fig. 3, and in the limitb5vg /vs→0, the thresholdc0c
increases linearly withvs and in agreement with limits given
in Sec. IV A 1. Accordingly, there is no Hopf bifurcation fo
the reduced model that follows in the limitb→0 as de-
scribed in Sec. II B 2. Hence, the dynamics of shrinking m
crotubules is one essential degree of freedom favoring o
lating microtubule polymerization. The dynamics
oligomers, as discussed in Sec. IV B, is an alternative deg
of freedom that favors oscillations.

For large values ofvs the frequencyvc becomes large
too, and the oscillation period becomes much shorter t
any relaxational dynamics ofpg and ct . According to the
quick shrinking, the lifetime of a depolymerizing microtu
bule vanishes and, therefore, the amplitude of the densit
shrinking microtubules is small too,ps}1/vs . In other
words, in the limit of large values ofvs , the intermediate
step of shrinking microtubules may be neglected, and
transition frompg to tubulin-d dimers is effectively a direc
process as explicitly assumed for the reduced model. If ei
the regeneration or the shrinking dynamics becomes too
the Hopf bifurcation is suppressed. The two intermedi
steps, the depolymerization and the regeneration, act o
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Since one has at thresholds5 ivc , pg
(1) andps

(1) in Eqs.
~37b! and ~37c! include both traveling wave contribution
proportional to exp@2i(vct2kl)# with a wave numberk
5vc /vg that always travel towards larger lengths of the m
crotubules. The length distribution is exponentially decay
on the length scalevg / f cat

(0) . If this is large compared to the
wavelengthl52pvg /vc , as, for instance, in the limitvs

@vg , then one has a kind of self-averaging in the respec
integrals and the Hopf bifurcation is suppressed.

The phase difference between the oscillations of tubulit
and the oscillations of the total amount of polymerized tub
lin, described byL(t) in Eq. ~10!, is another experimentally
accessible quantity@33#. The difference between the phas
of the oscillatory contributions ofcd and ct as well as the
difference between the phases ofL(t) and ct are given in
Fig. 5. These phase differences as well as the ratios betw
the amplitudes of the fields, cf. lower part of Fig. 5, a
calculated at the threshold of the Hopf bifurcation by usi
the analytical solutions calculated in Sec. IV A 3.

For large values ofa, tubulin-d is quickly regenerated
into tubulin-t and, therefore, the densitycd becomes smaller
as shown by the lower part in Fig. 5. In the opposite limit
small values ofa, tubulin-t is consumed by nucleation an
growth of microtubules, but the source, which is supplied
the regeneration of tubulin-d, decays and, therefore, one o
tains large values for the ratio between the amplitudes ofcd

(1)

andct
(1) as well as between the amplitudes ofL (1) andct

(1) .

FIG. 5. In the upper part, the differences between the phase
the oscillating contributions of the tubulin-d concentrationcd

~solid! and of the tubulin-t ct as well as betweenL(t) and ct

~dashed! are shown as functions of the regeneration ratea. In the
lower part the ratios between the amplitudes of the oscillating c
tributionscd

(1) andct
(1) ~solid! as well as between the amplitudes

L (1) andct
(1) ~dashed! are shown. The rest of parameters are as

Fig. 3.
3-9
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The decay of the ratio between the amplitudes ofL (1) and
ct

(1) is less obvious.L (1)5Lg
(1)1Ls

(1) has the two contribu-

tions Lg
(1)5g*0

`dl l pg
(1)5Ā cos(vct1wĀ) and Ls

(1)

5g*0
`dl l ps

(1)5B̄ cos(vct1wB̄). The two amplitudesĀ and

B̄ increase with the regeneration ratea. However, with in-
creasing values ofa, the phase differencew Ā2w B̄ increases
as well up to unity, leading to an effective decay of the s
L (1) as shown by the lower part of Fig. 5.

The phase shifts ofcd andL(t) with respect to the phas
of ct are rather independent of the regeneration ratea as
shown in Fig. 5. The absolute values of these shifts are
qualitative agreement with the expectation as describe
the following. At the maximum ofct the catastrophe rat
takes its minimum and, therefore, since the nucleation
the growth velocity are constant,L(t) increases for a while
up to the moment when enoughct is consumed, and the
catastrophe rate increases again. Due to an increasing d
of microtubules, the maximum of the latter will also lead
a delayed maximum forcd . For large values ofa, the
amount of polymerized tubulin is nearly in antiphase w
respect toct , which is also mentioned in Ref.@15#. The
slightly strongera dependence of the phase difference b
tween L(t) and ct is mainly due to thea dependence o
shrinking microtubulesps , because the relative phase ofpg

(1)

is nearly independent ofa ~see also Sec. IV B!.

B. Model II

Here the stability of the stationary polymerization state
model II, described byct

(0) , cd
(0) , and pg

(0) , is investigated
with respect to small perturbationsct

(1) , cd
(1) , andpg

(1) . With
the ansatz

pg5pg
(0)1pg

(1) , ~40a!

ct,d5ct,d
(0)1ct,d

(1) , ~40b!

the equations for model II are linearized with respect to th
perturbations and one obtains the following set of linear d
ferential equations with constant coefficients:

] tpg
(1)52 f cat

(1)pg
(0)2~ f cat

(0)1vg] l !pg
(1) , ~41a!

] tct
(1)52hlvgE

0

`

dlpg
(1)1acd

(1) , ~41b!

] tcd
(1)52xS ct

(1)1cd
(1)1hlE

0

`

dl l pg
(1)D 2acd

(1) .

~41c!

f cat
(1) is the first-order correction with respect to its value

the stationary state and it is given by Eq.~25!.
The time-dependent contributions to the tubulin-t and

tubulin-d dimer densities are described by

ct
(1)5Aest1c.c., ~42a!

cd
(1)5EAest1c.c., ~42b!
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with the common complex amplitudeA and relative complex
factorE that describes viaE5uEueiwd the amplitude ratiouEu
as well as the phase differencewd between both fields. With
the solution for growing microtubules as given in Eq.~27a!
we can eliminatect

(1) , and pg
(1) in Eq. ~41b! and we again

obtain from the resulting solubility condition a nonlinear di
persion relation for the exponential factors,

S Gs1
1

s1 f cat
(0)D ~s1a1x!1axS G1

s12 f cat
(0)

f cat
(0)~s1 f cat

(0)!2D 50,

~43!

with G5cf /(hlvgn). After a few rearrangements of thi
equation, one obtains a fourth-order polynomial ins for
model II as well,

s4f cat
(0)G1s3f cat

(0)G~2 f cat
(0)1a1x!1s2f cat

(0)@11axG

1G fcat
(0)~2x1 f cat

(0)12a!#1s@ f cat
(0)~ f cat

(0)1a1x!1ax

1 f cat
(0)2G$2ax1 f cat

(0)~a1x!%#1 f cat
(0)ax~G fcat

(0)212!

1 f cat
(0)2~a1x!50, ~44!

which determines the linear stability of the stationary po
merization for model II. Again we are interested in the ne
trally stable case, Re(s)50, which separates the stable fro
the unstable regime. At the neutral stability point of the Ho
bifurcation one hasvc5Im(s), and Eq.~44! can be decom-
posed into its real and imaginary parts. From these two eq
tions f cat

(0) and vc are determined by standard methods.c0c

may be calculated via Eq.~22!.

1. Traveling waves solutions

At the Hopf bifurcation, the nonstationary part of growin
microtubules is again described by the distribution given
Eq. ~37b! and the fieldscoli andcd are not in phase withct ,
in general. The two fields may be written in terms of t
amplitude ratiouEu and the relative phasewd in the following
form:

ct
(1)52A cos~vct !, ~45a!

cd
(1)52AuEucos~vct1wd!. ~45b!

The amplitude ratiouEu and the phasewd can be determined
from the two coupled equations~41b!, and ~41c!, and they
are given by

uEu5
Af cat

(0)21vc
2@G~ f cat

(0)21vc
2!21#2

aG~ f cat
(0)21vc

2!
,

wd5arctanS vc

f cat
(0) @G~ f cat

(0)21vc
2!21# D . ~46!

In a similar manner the oligomer densitycoli
(1) may be

written in terms of an amplitude ratiouFu and a relative
phasewoli betweencoli

(1) andct
(1) ,
3-10
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coli
(1)52AuFucos~vct1woli !, ~47!

with

uFu5
Aa21vc

2

x
uEu,

and

woli5arctanS atan~wd!1vc

a2vctan~wd! D . ~48!

The oscillatory contribution to the polymerized tubul
L (1) can also be written as a harmonic function,L (1)

52AuHucos(vct1wL). For both, the amplitude ratiouHu and
the relative phasewL , one obtains long expressions that a
not presented here. The phase shifts and the amplitude r
between the oscillating fields are shown in Fig. 7 as fu
tions of the regeneration ratea. As discussed in Sec. IV A
the phase shift of the polymerized tubulinL (1)(t) with re-
spect toct

(1) is rather independent ofa, whereas the phase o
oligomer oscillations changes slightly witha. A phase shift
p between the polymerized tubulin and oligomers is m
sured in experiments, cf. Refs.@12,34#. In this model this is
only possible in the limit of a dissociation ratex much
smaller than the regeneration ratea.

2. Numerical results for the threshold of model II

At the threshold, one has agains5 ivc , and from the
imaginary part together with the real part of the dispers
relation in Eq.~44!, the critical concentrationc0c and the
Hopf frequencyvc may be calculated as functions of th
parameters. Also for model II we restrict our numerical c
culations to the catastrophe rate with the exponential dep
dence given in Eq.~3!.

The critical tubulin concentrationc0c and the critical fre-
quencyvc at the Hopf bifurcation are shown in Fig. 6 a
functions of the regeneration ratea and for two different
values of the decay rate of oligomersx, whereby for the
reduced parameterG the valueG53000 has been chosen
SinceG includes a number of parameters, the curves in b
parts represent a larger parameter set. For a fixed finite v
for x in the limit of a vanishing regenerationa→0, where
the polymerization cycle is interrupted, and in the limit
very large values ofa, where the regeneration process
much faster than any other process, the critical tubulin c
centrationc0c diverges similar to model I and, therefore, th
Hopf bifurcation is suppressed. Ifa is kept fixed at a me-
dium value, the threshold curvec0c(x) as a function of the
decay ratex for oligomers has a similar shape, as shown
a function ofa in Fig. 6. The critical tubulin concentratio
c0c also takes its smallest values at intermediate values oa,
x andG, whereby the location of the threshold minima d
pends on the actual values of the rest of parameters. W
decreasing ratea→0 of tubulin regeneration, also the fre
quencyvc becomes small. On the other hand, for large v
ues of a, the tubulin regeneration is not anymore a ra
limiting factor and the critical frequencyvc becomes rathe
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independent ofa, cf. Sec. IV A 1.
The stability of oligomers and, therefore, the decay ratex

depend very much on the available GTP: Increasing G
concentrations destabilize oligomers and increase the d
rate x @7,11#. With increasing GTP concentrations, also t
ratea of the transition fromcd to ct is enhanced. However
if the tubulin regeneration and the oligomer decay beco
too quick, an oscillatory polymerization is suppressed.
other words, if one increasesa and x beyond some mini-
mum values, the threshold concentration for tubulin
creases too. Such a tendency for the GTP dependence o
oscillation is in agreement with the results reported fro
experiments@7,11,12#.

With increasing values ofa, tubulin-d is again quickly
transferred by the regeneration process into tubulin-t, lead-
ing to a small amplitude ratiocd

(1)/ct
(1) . Accordingly more

tubulin is left to be stored inL (1) andcoli
(1) . Therefore, both

increase with larger values ofa as indicated in Fig. 7. This
has to be compared withL (1) for model I, where it decays a
a function ofa, because the phase shift between the con
butions of the growing and shrinking microtubules chang
too. For model II, the relative phases are also rather indep
dent ofa, whereby due to the quick regeneration ofcd the
relative phase betweenct

(1) andcd
(1) is slightly decreasing.

3. Reduced models

The dispersion relation for models I and II, considered
the preceding section, becomes equivalent in the limitsb
→0 and x→`, and in both cases one obtains the sa
dispersion relation

s3G fcat
(0)1s2@Ga f cat

(0)12G fcat
(0)2#1s@a~112G fcat

(0)2!

1G fcat
(0)31 f cat

(0)#1a f cat
(0)@21G fcat

(0)2#1 f cat
(0)250, ~49!

FIG. 6. For model II the critical tubulin concentrationc0c and
the critical frequencyvc are shown at the Hopf bifurcation as func
tions of the regeneration ratea and for two different values of the
decay ratex of oligomers. The rest of the parameters areG
53000, f 50.1, andcf53.
3-11
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with the reduced parameterG as given in Eq.~30! for model
I and withG5cf /(hlvgn) for model II. This polynomial in
s always has negative growth rates, Re(s),0, and, there-
fore, stationary solutions are always stable.

V. NUMERICAL METHOD FOR MODEL I

The two differential equations for growing and shrinkin
microtubules in Eqs.~6! are of first order with respect to th
length l of the microtubules and first order in time.
straightforward spatial discretization of such first-order eq
tions often leads to numerical instabilities. Especially,
equation for shrinking microtubules, cf. Eq.~6b!, has prob-
lematic stability properties. For this reason, we approxim
the solutions of Eqs.~6! by a two-mode ansatz

pg~ l ,t !5expS 2
f cat

(0)

vg
l D S n

vg
1Fg~ l ,t ! D , ~50a!

ps~ l ,t !5expS 2
f cat

(0)

vg
l D S n

vs
1Fs~ l ,t ! D , ~50b!

where the first mode describes just the stationary solu
and the second one describes the oscillatory contribut
This approximation becomes exact close to the threshold
this ansatz leads with Eqs.~6! to two differential equations
for Fg,s ,

] tFg5~ f cat
(0)2 f cat!S n

vg
1FgD2vg] lFg , ~51a!

FIG. 7. The phase differences~upper part! and the amplitude
ratios ~lower part! between the oscillating contributions to th
tubulin-d concentrationcd

(1) ~solid!, the oligomer concentrationcoli
(1)

~dotted!, and the total polymerized tubulinL (1)(t) ~dashed! with
respect to the tubulin-t concentrationct

(1) are shown as a function o
the regeneration ratea. The other parameters areG53000 andx
50.02.
02190
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] tFs5 f catS n

vg
1FgD2

vs

vg
f cat

(0)S n

vs
1FsD1vs] lFs .

~51b!

Both fields may be expanded with respect to the first t
spatial Fourier modesei nlk (n50,1),

Fg~ l ,t !5B~ t !1 1
2 @C~ t !eikl1C* ~ t !e2 ikl #, ~52a!

Fs~ l ,t !5D~ t !1 1
2 @H~ t !eikl1H* ~ t !e2 ikl #, ~52b!

in order to remove the spatial dependence from Eqs.~51!.
Herein, the wave number is chosen at its value at the thre
old of the Hopf bifurcation,k5vc /vg . This ansatz leads to
a set of ordinary differential equations for the tim
dependent amplitudesB(t),C(t),D(t),H(t) that are de-
scribed in the following.

Due to Eq. ~5! one has the boundary conditionFg( l
50,t)50 that gives the relationCR52B, with Re(C)
5CR , between these two functions. Ansatz~52a! together
with Eq. ~51a! leads to the relation

Im~C!5CI5
n

kvg
2 ~ f cat2 f cat

(0)!, ~53!

and to the first-order differential equation inB,

] tB5~ f cat
(0)2 f cat!S n

vg
1BD . ~54!

Ansatz~52b! in Eq. ~51b! gives the set of coupled differen
tial equations

] tD5 f catS n

vg
1BD2

n f cat
(0)

vg
2

vs

vg
f cat

(0)D, ~55a!

] tHR52 f catB2
vs

vg
f cat

(0)HR2kvsHI , ~55b!

] tHI5 f catCI2
vs

vg
f cat

(0)HI1kvsHR . ~55c!

With the periodicl dependence given in Eqs.~52!, the inte-
grals in Eq.~24c! can be evaluated, and one obtains the f
lowing differential equation for the tubulin-t dimer density:

] tct52gvgK~ t !2agL~ t !1ac0c~11«!2act , ~56!

where the coefficients are given by

K~ t !5E
0

`

dlpg~ l ,t !5
n

vgd
1

k~kB2dCI !

d~d21k2!
, ~57!
3-12
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L~ t !5E
0

`

dll @pg~ l ,t !1ps~ l ,t !#

5
n

d2 S 1

vg
1

1

vs
D1D@3d2k2B1k4B22d3kCI

1d2~d22k2!HR22d3kHI1~d21k2!2D#, ~58!

and where the variablesD5@d2(d21k2)2#21 and d
5 f cat

(0)/vg have been introduced. The reduced control para
eter «5(c02c0c)/c0c measures the difference between t
tubulin dimer concentrationc0 and the critical onec0c . For
«.0, sustained oscillations occur but they are damped
low threshold,«,0. For the numerical solution of model I
we use either the same approximation scheme, where
the factors of the scheme take a different form, or in
absence ofps a direct spatial discretization provides also
stable algorithm. The five differential equations for mode
in Eqs.~54!, ~55!, and~56! and the corresponding three di
ferential equations for model II are integrated numerically
a second-order Runge-Kutta method with a time stepDt
50.01.

The time dependence of the fields of model I are shown
Fig. 8 for one parameter set and these fields obviously h
different phases. The extrema~maxima! of the polymerized
tubulin L(t) and the tubulin-d concentrationcd(t) are de-
layed with respect to the extrema of the tubulin-t concentra-
tion ct(t), a behavior that is already indicated by the react
cycle shown in Fig. 1. At the threshold, the parameter dep

FIG. 8. For model I, the time dependence of the tubulin-t con-
centrationct(t), the polymerized tubulingL(t), and the tubulin-d
concentrationcd(t) is shown in parts~a!, ~b!, and~c!, respectively.
The parametersn50.01,a50.01,b50.1 were used with the cor
responding critical initial concentrationc0c580.69. The reduced
control parameter is chosen at the value«50.01. In part~d! the
length distribution of the microtubulesP( l )5pg( l )1ps( l ) is
shown at two different timest5876 ~solid! and t5975 ~dashed!,
wheregL(t) takes its maximum and minimum, respectively.
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dence of these phase differences may be calculated from
formulas given in Secs. IV A 3 and IV B 1. In Figs. 5 and
these phases are shown as functions of the regeneration
a. In Fig. 8 the initial concentration of tubulinc0 was cho-
sen very close to the thresholdc0c with «50.01. At this
value of the control parameter, the oscillations behave h
monically and the agreement between the numerical solu
and the amplitude approximation is rather good, as descr
in the following section. For larger values of the reduc
control parameter, the oscillations become anharmonic.

As already been mentioned in the Introduction, the len
distribution of filaments is a crucial difference between t
biochemical reaction discussed in this work and the comm
oscillatory chemical reactions. For model I, we show in F
8~d! at two different times and at«50.01 the superposition
of the length distribution of growing and shrinking microtu
bules, cf.P( l )5pg( l )1ps( l ). The exponential decay of th
envelope of the length distribution is described by Eqs.~37b!
and ~37c!, with a decay ratevg / f cat

(0) , and the modulation is
due to the traveling waves in the time-dependent contri
tion. The amplitude of the shrinking microtubules is rath
small for b50.1 @cf. Eq. ~37c!# and, therefore, the contribu
tion to P( l ) comes mainly from growing microtubules.

For model II, a discretization of the length coordinate
the equation for growing microtubules, cf. Eq.~2!, also pro-
vides a stable numerical algorithm. Hence, the nonlinear
cillatory solution can be obtained numerically without th
approximations as described for model I in Eqs.~50! above.
The respective results are shown in Figs. 9~a!–9~c!, where
the densitiesL,ct , andcoli are shown as functions of tim
for three different regeneration ratesa. For both values ofa
in parts~a! and~b!, the tubulin concentration is smaller tha
the corresponding threshold value, but the absolute dista
c02c0c to the threshold is equal. These transient subthre
old oscillations are remarkable, because the transient osc
tions in experiments might be subthreshold ones, in cont
to the common interpretation that the oscillations are tr
sient due to the tubulin-t consumption during the microtu
bule polymerization.

For the simulations shown in Fig. 9, a narrow length d
tribution pg has been used as initial condition. In such cas
the tubulin-t concentration corresponds almost to the to
initial concentrationc0. Starting with such an initial condi-
tion, at first tubulin-t dimers are consumed during the grow
of microtubules. This leads to a first maximum of the po
merized tubulinL, but the oligomers, the decay product
the microtubules, are negligible and as a consequence
densities of tubulin-d and tubulin-t drop down too. But a
small ct increases the catastrophe ratef cat and microtubules
decay with a higher rate, which increases the density of
gomers, etc. After a few such oscillations, the densities re
their stationary values for subthreshold concentrations. In
case of a large regeneration rate the oscillation frequenc
much higher than for small regeneration rates and more
cillations are performed until the stationary values a
reached. The stationary value of the polymerized tubulin a
of the oligomers is also much larger in part~b! than in part
3-13
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~a!, whereas the stationary value for the tubulin-t dimers re-
mains nearly constant. The reason is the low densitycd in the
case of large values ofa.

Far beyond the threshold of the Hopf bifurcation, the o
cillations become anharmonic as shown in Fig. 9~c!. Hereby
the oscillations of the total polymerization and of their dec
product,coli , are nearly in antiphase, similar as in expe
ments described in Ref.@7#. At the threshold, a phase differ
ence ofp was only possible in the limit of large regeneratio
ratesa and for a much smaller dissociation ratex. If we
consider initial concentrations that are much larger than
corresponding critical concentration, the phase shift ofp be-
tweenL(t) andcoli(t) is also possible at intermediate valu
of x anda.

In Fig. 9~d! the distribution for growing microtubule
pg( l ) is shown for model II at three different times. Th
reduced control parameter«50.21 is rather large compare
to its value in Fig. 8, and the curves indicate that the len
distribution of microtubules is not described anymore by h
monic traveling waves as in the vicinity of the bifurcatio
As long as the tubulin-t density is large and the catastrop
rate small, microtubules grow with a constant velocityvg
and only a few of them experience a catastrophe. During
period, a plateau in the length distribution is built. But af

FIG. 9. For model II the time dependences of the polymeriz
tubulin hlL ~solid!, ct ~dashed!, andcoli ~dotted! are shown below
the Hopf bifurcation~see Fig. 6! for a50.0036 in ~a! and for a
50.08 in ~b! with an initial concentrationc0570. The correspond-
ing critical concentration for both values ofa is c0c5134.15. The
stationary value of the tubulin-d concentration iscd

(0)52.465 in~a!
and cd

(0)534.305 in~b!. In ~c! the time dependence is shown b
yond the oscillation threshold ata50.01. In part~d! the length
distribution of the growing microtubulespg( l ) is plotted at three
different times. Both in~c! and ~d! the initial concentration isc0

580 and the critical tubulin concentration isc0c565.97, which
corresponds to the value«50.21 for the reduced control paramete
The maximal length of the growing microtubules has been cho
as 12vg / f cat

(0) . In all parts, the rest of the parameters aren50.01,
x50.01,vg50.1.
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a large amount of tubulin-t has been used up, the catastrop
rate f cat increases very steeply, leading to a strong decay
the microtubules at all lengths. Iff cat drops down again, the
low density of long microtubules grows further with a co
stant velocityvg and short microtubules are nucleated a
higher density. This leads to a step in the distribution t
travels with the growth velocityvg to larger values ofl.
Therefore, far beyond the oscillatory threshold, the tem
rally anharmonic behavior ofct leads in this manner to the
steplike length distribution of the microtubules.

VI. AMPLITUDE EXPANSION

Here we focus on a semianalytical treatment of the os
lating polymerization slightly beyond its onset. The intere
ing question here is whether the bifurcation to these osc
tions is continuous ~supercritical! or discontinuous
~subcritical!. In physical systems, Hopf bifurcations a
mostly subcritical@27,35#, but for the models discussed i
this work we always find a supercritical one. This is adva
tageous, because for a supercritical Hopf bifurcation a se
analytical treatment is possible. The appropriate framew
is the universal amplitude equation of oscillatory fields,
Eq. ~1!. This equation will be derived in the present secti
from the basic reaction equations of microtubule polymeri
tion.

The perturbation analysis employed for the derivation
Eq. ~1! is an expansion of the solutions of the basic equati
with respect to small amplitudes of the oscillatory contrib
tions @27,28#. As a small perturbation parameter, the relati
difference between the actual tubulin concentrationc0 and
the critical tubulin concentrationc0c is introduced,

«5
c02c0c

c0c
. ~59!

A signature for the6 symmetry of the oscillatory behavio
@27,28# is the power law for the oscillation amplitudeA
;A«. Accordingly, the solutions of the basic equations at
threshold are expanded with respect to powers ofA«,

u5u(0)1«1/2u(1)1«u(2)1«3/2u(3)1O~«2!, ~60!

where the vector notationu( j )5( p̃g
( j ) ,p̃s

( j ) ,c̃t
( j )) is used with

j 50,1,2,3. The components ofu( j ) differ by a factor ofA«,
such asA« c̃t

(1)5ct
(1) , etc. The components ofu(0) describe

the stationary microtubule polymerization as given in Sec.
and the components ofu(1) describe the linear oscillatory
solutions that may be written at the threshold in the follo
ing form:

u(1)5Buee
ivct1c.c. ~61!

Hereue includes the amplitude ratios between the fieldsct
(1) ,

pg
(1) , ps

(1) at the threshold andA«B5A as explained below.
Close to the threshold, one has Re(s);«!1, and the

linear solutionu(1);est grows or decays only by a ver
small amount during one oscillation period 2p/vc . These
two disparate time scales near the threshold, that of the

d

n
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cillation period (}2p/vc) and that of growth and deca
(}1/«), may be separated within a perturbation expans
by introducing a slow time scaleT5«t @27,28#. The fast
time scale is included in the exponential functioneivct, and
the other one will be described by a slowly varying amp
tude B(T). Accordingly, the linear solution near thresho
may be written as

u(1)~ t,T!5B~T!uee
ivct1c.c. ~62!

In order to differentiate this product of time-dependent fun
tions, instead of applying the chain rule of differentiatio
one may replace this operation by the following sum:] t
→] t1«]T . Here ] t acts only on the fast time dependen
occurring in the exponential function and]T acts only on the
amplitudeB(T).

Using this replacement and the« expansion ofu the basic
equations given in Sec. II can be ordered with respec
powers ofA«. In this way we obtain a hierarchy of partia
differential equations, which we need up toO(«3/2). The
whole procedure is described in greater detail in the App
dix. The amplitude equation follows from a solubility cond
tion for the equation at orderO(«3/2) and it has the following
form:

t0]TB5~11 ia !B2g~11 ic !uBu2B. ~63!

t0 is the relaxation time,a andc are the linear and nonlinea
frequency shifts, respectively. The nonlinear coefficientg de-
termines the bifurcation structure. Forg.0 the bifurcation is
supercritical~steady! and forg,0 the bifurcation is subcriti-
cal ~unsteady!. For the coefficientst0 , a, g, andc, one ob-
tains long expressions in terms of the reaction constant
the basic equations, which have been calculated by u
computer algebra. The respective formulas are not prese
but the parameter dependence of the coefficients is show
Fig. 10 for model I and in Fig. 11 for model II.

Rescaling the timeT5«t and amplitudeA5A«B back to
the original units yields the amplitude equation

t0] tA5«~11 ia !A2g~11 ic !uAu2A, ~64!

as introduced in Sec. I. This equation has simple nonlin
oscillatory solutions of the formA5FeiVt, with an ampli-
tudeF and a frequencyV as follows:

F5A«

g
,

V5
1

t0
~«a2gcF2!5

a2c

t0
«. ~65!

V describes the deviation of the oscillation frequency fro
the critical one,vc .

The linear coefficientst0 anda of Eq. ~64! may directly
be calculated from the dispersion relation in Eq.~29! or Eq.
~44! in the following way. The solutionA50 of Eq. ~64!
corresponds to the stationary polymerization described
Sec. III, which is stable in the range«,0 against small
perturbationsA;F̃est ~with F̃!Au«u) and unstable for«
02190
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.0. Neglecting in Eq.~64! the contributions due to the cubi
nonlinearity, one obtains from its linear part the dispers
relations5«(11 i (a)/t0. This formula gives the relaxation
time t0 and the linear frequency dispersiona in terms of
derivatives of the growth rate with respect to the cont
parameter«: t05@] Re(s)/]«#21 anda5t0] Re(s)/]«. If
« is expressed in terms of the dimer densityc0, cf. Eq. ~59!,
then both quantities may also be written in terms of the
rivatives with respect toc0,

t05
1

c0c] Re~s!/]c0
, a5c0ct0

] Im~s!

]c0
, ~66!

whereby both derivatives are taken at the threshold conc
tration c0c . The dispersion relationss(«), as obtained on
the one hand by the amplitude equation and on the o
hand by solving Eq.~29! or Eq.~44!, both have to reproduce
the growth or decay dynamics of small perturbations w

FIG. 10. The coefficientst0 , a, g, andc of the amplitude equa-
tion ~64! are shown for model I as functions of the regeneration r
a and for two different nucleation ratesn50.01 ~solid line! andn
50.04 ~dashed!. For the rest of the parameters, the valuesvg

50.1, b50.1, f 50.1, andcf53 have been chosen.
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respect to the stationary polymerization. Therefore, the c
ficients t0 and a of the amplitude equation can directly b
calculated via Eq.~66! from the numerical solutions of Eq
~29! or Eq. ~44!.

One aim of the amplitude expansion is the determinat
of the type of the Hopf bifurcation. For two different nucle
ation ratesn50.01 andn50.04, the variation of the nonlin
ear coefficientg as a function of the regeneration ratea is
shown for model I in Fig. 10~top! and for model II with
oligomer dynamics in Fig. 11. In both cases,g behaves rathe
similar and is positive for the models investigated in th
work. Therefore the Hopf bifurcation is supercritical. In Fig
10 and 11, the nonlinear coefficientg increases at first with
the regeneration ratea and reaches a maximum in a ran
where the threshold concentrationc0c(a) takes its minimum.

It should be mentioned that, for a given value of the co
trol parameter«, a large value ofg corresponds to a sma
value of the oscillation amplitude. Since the thresho

FIG. 11. The linear and nonlinear coefficients of the amplitu
equation~64! are shown for model II as functions of the regene
tion ratea and for two different nucleation ratesn50.01 ~solid!
and n50.04 ~dashed!. For the rest of the parameters the valuesx
50.01, f 50.1, cf53 have been chosen.
02190
f-
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c0c(a) varies too, the variation of the oscillation amplitud
with a is much less whenc0c« is kept constant. According to
the sign of the nonlinear coefficientc, the oscillation fre-
quencyvc1V decreases with increasing values of«. The
results in terms of the amplitude equation are in fairly go
agreement with the behavior of the full numerical solution
the basic reaction equations.

A determination of the bifurcation structure by numeric
simulations of the basic equations is error prone compare
the results of perturbation calculation described here.
sides the lower accuracy, parameter studies such as in
10 and 11 are much more time consuming with numeri
simulations.

Close to threshold, the advantages of the perturbation
culation are obvious. However, it isa priori unknown to
which « range the amplitude equation approach~64! applies
quantitatively. For some systems the amplitude equatio
valid in a rather large range of the control parameter«, but
for other systems its validity is restricted to very small valu
of it, cf. Ref. @27#. In order to check this for our models o
microtubule polymerization, we compare in Fig. 12 t
variation of the oscillation amplitude ofct

(1) with the control
parameter« as obtained by the numerical solution describ
in Sec. V and by the solutionA5A«/g of the amplitude
equation for two different values of the nucleation raten. At
larger values of the control parameter,«50.1, the difference
between the results for the numerical solution and the am
tude equation is still less than 8%. For model II the dev
tions are larger between the amplitude determined by
amplitude equation approach and the numerical soluti
with the ansatz in Eqs.~52!. However, when we solve the
equation for growing microtubules, cf. Eq.~2!, numerically
by discretization of the length coordinate, the deviations
come smaller.

For both models, the linear coefficientt0 and the nonlin-
ear coefficientsg,c do not differ very much from each othe
However, the linear frequency shifta increases in model II
for large regeneration ratesa, whereas for model I it de-

e
-

FIG. 12. The amplitude of the oscillations as a function of t
reduced control parameter« and for two different nucleation rate
n. The solid line is the result of the amplitude equation and d
points have been determined from simulations as described in
V. The parameters that have been used areg51, a50.01, vg

50.1, b50.1, f 50.1, cf53.
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creases. Nevertheless, in both models the nonlinear
quency correction due to the values ofc is much larger than
the linear correction due toa, c@a.

Whether the bifurcation to oscillatory polymerization
also supercritical in experiments under stationary regen
tion conditions is an open question. Therefore an experim
tal determination of the bifurcation type would be an impo
tant test for the reduced models investigated in this work

The variation of the other coefficients with the regene
tion ratea provides further contact between the model p
rameters and experimentally measurable quantities. The
rameters c, a, and t0 may be determined as follows
Studying the growth of small perturbations,ct

(1)}eRe(s)t

5e«t/t0, by plotting the logarithm«t/t0} ln(ct
(1)) as a func-

tion of time and for different values of«, the relaxation time
t0 may be determined. In a similar manner,a may be deter-
mined by studying the frequency of a perturbation far bel
its nonlinear saturation amplitude. If the perturbation sa
rates finally, the oscillation frequency of the nonlinear so
tion changes with« as indicated by Eq.~65!. From this«
dependence the nonlinear coefficientc may be extracted. An
experimental determination of these coefficients, as
scribed, would be a further test of the basic model equatio

VII. SUMMARY AND CONCLUSION

Two reduced models that capture oscillating microtub
polymerization and the length distribution of the microtubu
filaments, as described in Sec. II, have been analyzed
both models, the complex biochemical reaction steps of
crotubule polymerization are described by a few steps, wh
have been identified in experiments to be important. T
focus on a few essential degrees of freedom leads to s
simplicity of the models that allows, for instance, a deriv
tion of analytical expressions for the threshold and the os
lation frequency at the Hopf bifurcation. Such analytical
sults make trends as functions of the reaction rates m
easily visible. Some of these trends may be tested in exp
ments and some of the reaction constants may be meas

At threshold, also analytical expressions could be deri
for the temporal evolution of the concentrations and
length distribution of microtubules. These provide a detai
picture of the temporal variation of the fields, their relati
phases, and the amplitude ratios between them. The form
for the length distribution is especially instructive, cf. E
~37b!; it describes a superposition of amplitude oscillatio
of the distribution and traveling waves, where the waves
ways travel towards larger lengths. This qualitative behav
of the length distribution during oscillatory polymerization
rather independent of the respective model and is a ra
general feature. A few snapshots of the numerically gen
ated distribution far beyond threshold are shown in Fig. 9~b!.
The distribution includes still traveling waves, but far b
yond threshold, these behave rather anharmonic.

For stationary reaction conditions, as assumed in
work, Fig. 9 shows a remarkable result. In parts~a! and ~b!
of this figure, a subthreshold concentration for tubulin w
assumed, i.e.,c0,c0c , and in both cases the final state
stationary polymerization. However, on the route to the s
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tionary state, transient oscillations occur. Therefore, the tr
sient character of the microtubule oscillations observed in
experiment with an enzymatic regeneration process for G
@11#, could have, according to the results described in t
work, its origin in a too low tubulin concentration. A highe
tubulin concentration or an appropriate regeneration rate
GTP and a different lifetime of oligomers could lead, in
similar experiment, to persistent microtubule oscillations.

For transient oscillations observed in other experimen
the common interpretation is as follows. During the micr
tubule polymerization in experiments, the available GTP
used up and the oscillations last only for a few periods
GTP is continuously supplied, the simultaneously increas
amount of GTD inhibits various reactions steps and slo
down the reaction cycle. The results shown in Figs. 9~a! and
9~b! indicate that oscillations may occur as a transient
cause either GTP is used up or the tubulin concentration
only a subthreshold value. Accordingly, there may be sev
reasons for transient oscillations in experiments. Either
initial tubulin concentration has a subthreshold value,
decay rate of oligomers and the regeneration rate for GTP
not have their optimal values, which would explain transie
oscillations in experiments with a regenerative enzyme s
tem, or the reaction conditions are not constant, because
is used up. In the latter case the available tubulin-t decreases
with time and the microtubule polymerization decays.

In an in vitro experiment with constant reaction cond
tions, the threshold of oscillations might be measured
increasing the tubulin dimer concentration by appropri
steps. Immediately after each step, transient oscillati
might occur, but the threshold is only crossed when the
cillations persist over a long time.

In order to avoid numerical instabilities during long tim
simulations of the reaction equations, including Eq.~6b!, we
use analytical approximations for the length dependence
the microtubule distributions as described in Sec. V. T
stable numerical scheme can be generalized in future wor
an effective algorithm for dealing with microtubule polyme
ization in one and two spatial dimensions@26#, in order to
investigate spatial patterns occurring during polymerizat
of microtubules@10,24#. The respective extension of the am
plitude equation may also lead to interesting insights.

Microtubule filaments at a high density show an isotrop
nematic phase transition@22#, similar to what has been ob
served forF-actin filaments@36#. Since the early theory o
Onsager@37#, this transition for rods in a solvent is a we
understood phenomenon@38#. For a monodisperse distribu
tion of filaments of fixed length, i.e., without polymerizatio
kinetics, many aspects of the isotropic-nematic transit
have been understood. For polydisperse rod mixtures, s
aspects of the isotropic-nematic transition can be conside
to be understood too@39#. The effects of nucleation, growth
of filaments, and the decay of filaments on the isotrop
nematic transition are not known at present and one m
expect interesting phenomena related to this kinetics@23#.
The effect of oscillating microtubule polymerization on th
isotropic-nematic transition is also completely unexplored
present and will be investigated in forthcoming works@23#.
3-17
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APPENDIX: AMPLITUDE EXPANSION FOR MODEL I

For model I and the catastrophe rate given in Eq.~3!, the
major steps of the derivation of the amplitude equation~1!
are described in this appendix. Since we neglect the rescu
shrinking microtubules,f resc50, the only nonlinear term in
the basic equations of model I is the productf cat(ct)pg in
Eq. ~6!. At first we expand the concentrationsct ,c0 and
length distributionspg,s with respect to deviations from the
stationary value at the threshold for oscillation, such as,
instance, for the tubulin-t concentration, i.e.,ct2ct

(0)

5A« c̃t
(1)1« c̃t

(2)1•••. Note that the fields having tildes dif
fer just by a power ofA« from the fields without tildes as
introduced in Sec. IV, cf. (A«) j c̃t

( j )5ct
( j ) , etc. In order to

simplify the notation of this appendix we drop the tilde a
the expansion of the catastrophe rate takes the form

f cat5 f cat
(0)1«1/2f cat

(1)1« f cat
(2)1«3/2f cat

(3)1•••, ~A1!

whereby the coefficients of this expansion are

f cat
(1)52 f cat

(0)
ct

(1)

cf
, ~A2a!

f cat
(2)5 f cat

(0)F1

2 S ct
(1)

cf
D 2

2
ct

(2)

cf
G , ~A2b!

f cat
(3)5 f cat

(0)F ct
(1)ct

(2)

cf
2

2
ct

(3)

cf
2

1

6 S ct
(1)

cf
D 3G . ~A2c!

Collecting in Eqs.~6! and ~11! the contributions to the
order«1/2, we recover the linear equations given in Sec.

] tpg
(1)5 f cat

(0)
ct

(1)

cf
pg

(0)2 f cat
(0)pg

(1)2vg] l pg
(1) , ~A3a!

] tps
(1)52 f cat

(0)
ct

(1)

cf
pg

(0)1 f cat
(0)pg

(1)1vs] l ps
(1) , ~A3b!

] tct
(1)52gE

0

`

dl@vgpg
(1)1a l ~pg

(1)1ps
(1)!#2act

(1) .

~A3c!

At order «, we obtain the three equations

] tpg
(2)5S f cat

(0)
ct

(2)

cf
pg

(0)2 f cat
(0)pg

(2)2vg] l pg
(2)D 1 f cat

(0)
ct

(1)

cf
pg

(1)

2
f cat

(0)

2 S ct
(1)

cf
D 2

pg
(0) , ~A4a!
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] tps
(2)5S 2 f cat

(0)
ct

(2)

cf
pg

(0)1 f cat
(0)pg

(2)1vs] l ps
(2)D 2 f cat

(0)
ct

(1)

cf
pg

(1)

1
f cat

(0)

2 S ct
(1)

cf
D 2

pg
(0) , ~A4b!

] tct
(2)52gE

0

`

dl@vgpg
(2)1a l ~pg

(2)1ps
(2)!#1ac0c2act

(2) .

~A4c!

With the solutions of the equations at the previous order«1/2,
which are already given in Sec. IV A 3, the equations at
der « have to be solved. These solutions have the follow
form:

ct
(2)5A01A2exp~2ivc~ t !1c.c., ~A5a!

pg
(2)5e2 f cat

(0) l /vg$B0~ l !1@B2~ l !e2ivct1c.c.#%, ~A5b!

ps
(2)5e2 f cat

(0) l /vg$D0~ l !1@D2~ l !e2ivct1c.c.#%, ~A5c!

whereby the expressions for the coefficientsA0 , A2 , Bi , and
Di are rather lengthy in terms of the coefficients of the s
lutions at order«1/2 and are not given here.

The equations at the next higher order«3/2 are

]Tpg
(1)1] tpg

(3)5S f cat
(0)

ct
(3)

cf
pg

(0)2 f cat
(0)pg

(3)2vg] l pg
(3)D

2F f cat
(0)

ct
(1)ct

(2)

cf
2

2
f cat

(0)

6 S ct
(1)

cf
D 3Gpg

(0)

1F f cat
(0)

ct
(2)

cf
2

f cat
(0)

2 S ct
(1)

cf
D 2Gpg

(1)

1 f cat
(0)

ct
(1)

cf
pg

(2) , ~A6a!

]Tps
(1)1] tps

(3)5S 2 f cat
(0)

ct
(3)

cf
pg

(0)1 f cat
(0)pg

(3)1vs] l ps
(3)D

1F f cat
(0)

ct
(1)ct

(2)

cf
2

2
f cat

(0)

6 S ct
(1)

cf
D 3Gpg

(0)

2F f cat
(0)

ct
(2)

cf
2

f cat
(0)

2 S ct
(1)

cf
D 2Gpg

(1)

2 f cat
(0)

ct
(1)

cf
pg

(2) , ~A6b!

]Tct
(1)1] tct

(3)52gE
0

`

dl@vgpg
(3)1a l ~pg

(3)1ps
(3)!#2act

(3) .

~A6c!

The two fieldspg
(3) andps

(3) have to be calculated explicitly
at this order from Eqs.~A6a! and ~A6b! as well. With both
solutions, the integral on the right hand side of Eq.~A6c! can
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be calculated. Equation~A6a! and ~A6b! include both con-
tributions proportional toeivct and e3ivct, but only the
single-harmonic terms are relevant in Eq.~A6c!. The coeffi-
cient of eivct in Eq. ~A6c! must vanish. Part of it vanishe
n

w,

ol

n

, J

02190
automatically, because it reproduces the threshold condit
and the rest provides the amplitude equation with all
coefficients now given in terms of the reaction rates of
basic equations.
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