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Modeling oscillatory microtubule polymerization
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Polymerization of microtubules is ubiquitous in biological cells and under certain conditions it becomes
oscillatory in time. Here, simple reaction models are analyzed that capture such oscillations as well as the
length distribution of microtubules. We assume reaction conditions that are stationary over many oscillation
periods, and it is a Hopf bifurcation that leads to a persistent oscillatory microtubule polymerization in these
models. Analytical expressions are derived for the threshold of the bifurcation and the oscillation frequency in
terms of reaction rates, and typical trends of their parameter dependence are presented. Both, a catastrophe rate
that depends on the density of guanosine triphosphate liganded tubulin dimers and a delay reaction, such as the
depolymerization of shrinking microtubules or the decay of oligomers, support oscillations. For a tubulin dimer
concentration below the threshold, oscillatory microtubule polymerization occurs transiently on the route to a
stationary state, as shown by numerical solutions of the model equations. Close to threshold, a so-called
amplitude equation is derived and it is shown that the bifurcation to microtubule oscillations is supercritical.
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[. INTRODUCTION cus on modeling microtubule polymerization for time-
independent regeneration conditions. As a starting point we

Microtubules are cylindric filaments that are used in cellstake common reduced models, where several elementary pro-
for many different purposes, being vitally involved in cell cesses of the real biochemical reaction are described by a
motility and division, organelle transport, and cell morpho-few effective reaction steps as explained in Sec. Il, cf. Refs.
genesis and organizatigt]. The precise ways in which mi- [6,7,15,17. Reductions of complex chemical reaction
crotubules achieve their amazing variety of cellular functionsschemes are quite common, and a famous example is the
is not fully understood yet. Microtubules in cells are gener-so-called oregonatd0], which is a reduced model for the
ally dynamic, they assemble, disassemble or rearrange onlegendary Belousov-Zhabotinsky reactid@l]. However,
time scale of minutes. GTRguanosine triphosphatehy-  since microtubules are long filaments, there are essential dif-
drolysis is apparently the driving force of microtubule physi-ferences between the polymerization of microtubule fila-
ology. ments and common chemical reactions. For instance, micro-

The rich nonequilibrium dynamics of microtubules, in- tubules may undergo an orientational ordering transition
cluding nucleation, polymerization kinetics, ef2,3], is at- beyond a critical filament densify22], a phenomenon that
tracting considerable attention, both experimentally andloes not occur in common chemical reactions. Accordingly,
theoretically[4—18. Two phenomena in this area, the dy- the length distribution of microtubules is explicitly taken into
namical instability of microtubule$4] and the oscillatory account for all variants of models investigated in this work.
polymerization[5—12], have already challenged theoretical Such models are the basis of future work on interesting
modeling for a whilg13-18§. pattern-formation phenomena related to the interplay be-

Oscillations during microtubule polymerization have beentween orientational ordering of filaments and the kinetics
observed either when GTP is regenerated enzymatically frormvolved in filament growtH23|.
endogenous GDRguanosine diphosphatg5,7,9,11 or In addition, we focus on model variants that include the
when some amount of GTP is provided at the beginning opossibility of an oscillatory microtubule polymerization and
during an experiment. In the latter case, oscillations occuthat allow analytical approaches. However, the reaction
only as a transient, because GTP is either consumed or sorsgeps, such as nucleation, growth, and decay of microtubules
reactions steps may be inhibited due to the accumulation afr the rate limiting factors of oligomer decay or tubulin re-
GDP[8]. If both possibilities are combined, the length of a generation, which have been identified to be crucial for os-
transient regime depends on the initial concentrations of GTRillations[5—-8,11], are taken into account. Moreover, we ad-
and GDP and on the capacity to regenerate GTP. Presedtess the question whether microtubule oscillations occur
models for microtubule polymerization focus mainly on atransiently or in a persistent manner beyond a Hopf bifurca-
description of transiently occurring oscillations, and the sotion. Whether such a Hopf bifurcation takes place supercriti-
lutions of the respective models are mostly numericalcally or subcritically is investigated in terms of the so-called
[6,15,17. amplitude expansion.

In recentin vitro experiments, however, the capacity to It is not a major goal of this work to achieve quantitative
regenerate GTP has been enhanced and extended up to segreement between the results obtained with phenomeno-
eral hourd19]. Compared to a typical oscillation period dur- logical models and experimental measurements. However,
ing microtubule polymerization, which is of the order of 1 since the present understanding of the mechanism leading to
min, the reaction conditions in these experiments are almosiscillatory microtubule polymerization is incomplete, re-
guasistationary over a long range of time. Therefore we foduced models may be an appropriate tool for working out
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typical trends that may be testable in experiments. For comescillation threshold may proceed directly to Sec. IV A 4.
parison it is very helpful that, for reduced models, trendsThe partial differential equations for growing and shrinking
may be worked out analytically and may be presented bynicrotubules are of first order in the length of the microtu-
simple formulas. A number of spatiotemporal phenomena inbules and first order in time. Their straightforward discreti-
volving microtubule polymerization call for a better under- zation and numerical solution has to be considered with care,
standing t00[10,24,25, but also in this case, simple and therefore a stable numerical scheme, which becomes exact
effective models are indispensable in order to keep the mod:lose to the threshold of the Hopf bifurcation, is described in
eling tractabld 26]. Sec. V. The derivation of the universal equatidn is out-

At the transition to oscillatory polymerization, the station- lined in Sec. VI, whereas the technical details are given in
ary state becomes sensitive against small perturbationghe Appendix. With a summary and an outlook about mod-
which grow or decay exponentially,e’*. Here the exponen- eling microtubule polymerization, we conclude this work in
tial factor o=o0,*iw. is the sum of the so-called growth Sec. VII.
rate o, and the oscillation frequency.# 0. Below the bi-
furcation_point, the growth rater, <0 is nggativg and .the Il. MODELS FOR MICROTUBULE POLYMERIZATION
perturbations are damped. Beyond the bifurcation paipt,
is positive and the stationary polymerization state is unstable Microtubule assembly and disassembly proceeds in sev-
against oscillatory perturbations. Hence the Hopf bifurcatioreral stepg1-3,5,7,8. Aggregation of GTP liganded tubulin
to oscillatory polymerization takes place when the real partdimers, the so-called tubulin-to microtubules is started by
o, of both roots passes zero. The investigation of the polyheating up tubulin solutions to a temperature of about
merization dynamics beyond the Hopf bifurcation requires in30—37 °C in the presence of GTP. Then microtubules spon-
most cases a numerical analysis of the basic reaction equneously nucleate and polymerize to long rigid polymers
tions. However, close to threshold, is small and the oscil- made up ofa-B tubulin dimers. An increasing number of
lation of the polymerization, described by the real part oflong microtubules in a solvent causes an increasing turbidity,
e'“c!, is much faster than the temporal evolution of the com-and the amount of polymerized tubulirmay be monitored
plex valued amplitudé\(t) of the oscillations. Therefore the by measuring this turbidit{6] or by x-ray scatterin¢8]. The
oscillation may be written as a product of both factors, i.e.nucleation of microtubules is a rather complex process and it
xA(t)e'“e!, and there is a very general approach, the sois still a matter of debate whether the nucleation rate depends
called amplitude expansion, for separating the dynamics dn experiments only on the initial concentration of tubuljn-
these two disparate time scal&y,2§. The amplitude equa- c;, or during the polymerization on the temporally varying
tion describing the evolution of the amplitudgt) is ob- ¢, [3,30]. But once microtubules are formed, they grow and
tained by a perturbation expansion of the reaction equationthe available tubuliri-dimers will be used up. The growth
with respect to the slowly varying amplitud(t), and itis  velocity of microtubulesy g, is rather sensitive to tempera-

of the form ture variations, but rather independentpf30,31. Growing
microtubules may change their states to rapidly depolymer-
TodA=e(1+ia)A—g(1+ic)|A|?A. (1)  izing ones by the so-callechtastropheatef,,. In previous

works for the catastrophe rate, mostly an exponential depen-

The control parameter measures the relative distance from dence on the tubulih-concentration was assumed, i.B,,;
the bifurcation point and is the relaxation time defined by ~exp(—c;/c;) with some constant; [6,15]. Once microtu-
To=¢lo,, which depends on the system. If the coefficignt bules have changed from growth to shrinking, they shrink
of the nonlinear term is positive, the bifurcation to the oscil-rather quickly with a large velocitys>v .
latory state is supercritical and if it is negative, the bifurca- During the depolymerization of microtubules they are
tion is subcritical. The imaginary parts of the prefactors defragmented into oligomers or directly into GDP liganded tu-
scribe the linear and nonlinear frequency dispersionbulin dimers, the so-called tubulih-dimers. The oligomers
Especially about the extension Ed) including spatial de- themselves are believed to fragment further into tubdlin-
grees of freedom, there exists a rich literature as summadimers and the decay rate depends on the free GTP and GDP.
rized, e.g., in a recent reviej29]. Here, we calculate the Oligomers are stabilized by GDP and destabilized by GTP
coefficients of the universal equatiét) for microtubule po- [8,11]. If an excess of GTP is available, then tubulinin
lymerization and we discuss their variation in terms of reac-solution will exchange its unit of GDP for GTP and each
tion rates. tubulint dimer resulting from such an exchange step is iden-

In Sec. Il we describe the main steps of the reaction cycleical to the initial tubulint dimer. Such a regeneration step
for microtubule polymerization, and the respective equationgompletes the whole microtubule polymerization cycle. If a
for two models are presented. The time-independent solwontinuous source of GTP is provided, for instance, by a
tions for the stationary polymerization are given for bothregeneration process, this cycling may be continued over a
models analytically in Sec. Ill. Those become unstabldong time [19]. The variation of the reaction rates of the
against oscillatory perturbations in the range of high tubulinpolymerization cycle with the concentratiap may depend
dimer density. The respective linear stability analysis and then the specific experiment.
derivation of the oscillation threshold are given in Sec. IV, There are rather detailed models available to describe this
including their dependence on the reaction parameters. Rearkaction cycle of microtubule polymerization, see, e.g., Ref.
ers who are mainly interested in numerical results about thgl5]. As a simplification of this complex biochemical reac-
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= nlldeaﬁon\ growing microtubules into oligomerénodel ). v, is the
. growth velocity of the microtubules.
tubulin-t — -~ 8rowing
GDP A microtubules

1. Growth velocity and catastrophe rate

o £ ¢ In recent experiments with high tubultneoncentration,
o e the growth velocityv; was rather independent af [30].
GTP Since we are mainly interested in the oscillatory behavior of
) Vs shrinking microtubule polymerization, which occurs at highconcen-
tubulin-d <—— © trations, we assume a constagtin this work. In most of the
microtubules .
present models, e,—dependent catastrophe rdtg; is cru-
. cial for the oscillatory polymerization of microtubules.
/ nucleation \ Rather common is an exponent@ldependenc§l5]
tubulin-t ————>  growing
GDP A microtubules feal(c)="Fec/er, 3
a foar with thg amplitudef and the decay constact. However,
GTP also a linearc; dependence
tubulin-d <— % oligomers feal(C)=f(cy—¢cp) (4)

FIG. 1. Two models for the cycle of microtubule polymeriza- ith it t ~c leads t illat
tion. Model | (upper cycleg: Tubulint dimers may spontaneously with an appropriate constar,>c; leads to an oscillatory

form nuclei of microtubules that grow further by incorporating Microtubule polymerization, as we show in Sec. IV A. A
tubulint dimers. A growing microtubule may also change its stateNYPerbolicc; dependence ofc,,, as discussed in Refl16],

to a quickly depolymerizing one by the so-calleatastropherate &S0 supports oscillating polymerization.

f.at,» but it may also change back to the polymerizing state by a

so-called and rather smatscuerate f,.... Tubulind dimers are 2. Nucleation and boundary conditions

released during this microtubule depolymerization, and the whole The nucleation process of microtubules is rather complex
i e, et o s s &1 been nvestgated i grete detal n AO31.37
' yclo. b recently. The nucleation ratedepends on the initial concen-

of shrinking microtubules is replaced by oligomers, e.g., microtu-__ . - o .
bules break off with a ratd,,, directly into oligomers and the tration cq of tubulin dimers, but it is rather independent of

oligomers themselves may break off with the rgténto tubulind the temporal Variati(_)n ot;, as ObserV_eq_in recent experi-

dimers. The rest of the cycle is identical to the upper cycle. ments[30,3]. Accordingly, for a given initial concentration
Co We assume a constant nucleation rateThe nucleation

tion we only take into account as rate limiting factors one offate v itself defines a boundary condition for the length dis-

the two intermediate steps of the polymerization cycle, eithefibution of growing microtubulespy(l.t), atl=0,

the dynamics of shrinking microtubuléspper cycle in Fig.

1) or the decay dynamics of oligomefl®wer cycle in Fig. v

1). Without both rate limiting factors there are no microtu- Pg(I=00)=—. ®)

U
bule oscillations, but one is sufficient for oscillations. The 9
two simplified reaction schemes, as sketched in Fig. 1, are
analyzed in detail in this work. B. Model | includes the dynamics of shrinking microtubules

In model | we take into account, as an intermediate step
A. Dynamics of growing microtubules between growing microtubules and tubutirdimers, the dy-

During microtubule polymerization there are many grOW_namics of shrinking microtubulep§(I 1). Here the catastro-
ing filaments in a unit volume and their length distribution Phe ratefc,, describes the transition of microtubules from
may be described by a length- and time-dependent functiof'® 9rowing to the shrinking state. The depolymerization
pe(l.t), whose detailed form varies with the experimentalSPEeds Of shrinking microtubulesp(l.t), is mostly much
conditions. A simple model for the dynamics of distribution larger than the growth velocity, . Having microtubules in
of growing microtubuleq(1,t) is described by the follow- two different states, one may also expect a transition from

ing first-order differential equatiofi.3,14: the shrinking back to the growing state, as described by a
ratef,.sc. SO one has two coupled equations for the growing
IPg and shrinking microtubulelsl3,14:
O’Itpg:_fcatpg_vgw- 2
&tpg:_fcatpg+frescps_vgl9lpgv (6a)
f.at describes either the transition from the growing to the
shrinking state of microtubuleémodel ) or the decay of 3tPs=feaPg— FresddsTvsdIPs- (6b)
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The rescue raté, 5., however, is usually very small in ex- 1. Rescaling of model |
periments and, therefore, it is neglected in this work. The  afer rescaling timet and lengthl, i.e.
boundary condition for shrinking microtubules is T

po(l—,1)=0, @ t'=at, I'=—I, (12)
Ug

because the transition from growing to shrinking microtu-it js easy to see that model | may be characterized by a set of

—o0,t) vanishes for large values bof

The temporal evolution of the concentration of the Vg Vs ¥ Co  fresc
tubulint dimers,c,, and tubulind dimers,cy, is described Y=, T, T, T (13
. K 1% o Cf o
by two equations as follows: 9

Some of these dimensionless quantities may be further com-
_ - bined to other dimensionless parameters as, for instance, in
9Ci=— dipy(l,t)+ acy, o . . ' '
o wgfo Py(l. )+ acq 3 the threshold condition given in Sec. IV A.

2. Reduced model

‘9th:70st dipg(l,t) — acy. (8b) Since the depolymerization velocitys is much larger
than the growth velocity ; one may also consider the limit
vs>vg. In this case the shrinking microtubules decompose

The first term in Eq.(8a) describes the consumption of o5y instantaneously into tubulih-dimers, and growing

tubulin during the polymerizationgrowth) of microtubules — nicrGryhules decay effectively, due to the short life time of
and y is a length factor describing the number of tubulin y,¢ g inking microtubules, into tubulididimers. In order to
dimers that are incorporated in a unit length of microtubulesyocribe this direct decay, the source term in EBp)

c; is regenerated frongy by exchanging the unit GDP for yoofdIpg(l,t), must be replaced byf.f2dl 1 pg(lt).

GTP, and this regeneration process, described by thex;ate Eliminati . . .
. . . iminating again the density,, one ends up with a reduced
occurs in Eqg.(8a) as a source and in Eq8b) as a sink. model for only two densities:

Tubulind dimers are released during the depolymerization
of microtubulespg(l,t) and this source is described by the

integral in Eq.(8b). 9iPg= ~TeaPg~VgdIPg. (143
Tubulin dimers may be a constituent of growing or B

shrinking microtubules, or they carry GTP or GDP as single 9,Cy= — yf di(vg+al)pgtalco—cy).  (14b)

dimers, but altogether they are conserved as expressed by the 0

condition

This simplified model reproduces essential aspects of the sta-
Ci+Cqtyl=cq. (9)  tionary polymerization of microtubules as described in Sec.
M.

Herec, describes the overall concentration of tubulin dimers _ _ _
andL(t) is the integrated length of all microtubules per unit C. Model Il'includes the dynamics of oligomers

volume, Oligomers occur as an intermediate product during the
decay of microtubules and they are made of several tubulin
o dimers. This intermediate product is ignored in model |. Here
L(t)=f0 dl[pg(l,t) +ps(l,t)]. (10) in model II, after the so-called catastrophe, we ignore the
dynamics of shrinking microtubules as an intermediate step
and instead we take into account tfaecay dynamics of
oligomers. Therefore, the catastrophe riig in Eq. (2) de-
scribes for model Il a direct transition of growing microtu-
bules into oligomers. Furthermore, it is assumed that oligo-
mers decay with the ratg into tubulind dimers. The
concentration of oligomers is denoted by;, and its dy-
namics as well as that afy are described by the two equa-

The tubulind concentratiorcy may be eliminated from Eq.
(8a) by using the conservation conditidd). On the other
hand, Eq(9) in combination with Eqs(6) and(8a) yields an
equation that is identical to Eq8b). Hence Eqs(6a) and
(6b) together with

se== | dlogpgtal(pgtpal+a(co—cy 1 1O

| o - o= nese | A1pgI0-xco, (153
describe the polymerization dynamics of microtubules for 0
model I, whereby a constant growth and shrinking velocity is
assumed in this work. JCyq= X\ Cqji— aCy. (15b
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7 is a measure for the number of oligomers per unit length of

the microtubules andl is a measure for the number of tubu- v =0.01

lin dimers per oligomer. Oligomers decaying with the rgte 7

build a source term in the equation for tubudndimersin | = _ e e————————— ]
v=0.05

Eqg. (15b).
The conservation law for the concentration of all tubulin
dimers takes the form

0.02 0.04 0.06 0.08 0.10
The equation for the growing microtubules is the same as for regeneration rate o

model I, cf. Eq.(2), but in the equation foc,, cf. Eq.(8a),
one has to replace the length factprby the producty\.
Eliminating c,;;, model 1l is described by Eq$2) and (8a)
together with the following dynamical equation foj:

f
°° !
Ct+Cd+)\Co|i+77)\J d”pg(l,t):CO (16) ST 7]
0 L
0

FIG. 2. The tubulint concentratiorc{®) for the stationary poly-
merization state of model | is shown as a function of the regenera-
tion ratea and for two different values of the nucleation rateThe
velocity ratio between the growing and shrinking microtubules
is B=v4/vs=0.1 and the rest of the parameters ayg=120,

atcdzx(co—ct—cd—n)\f dIng)—acd. (17) vg=0.1,¢,=3,f=0.1,y=1.
0

equations have exponentially decaying solutions, which take
As a boundary condition for the growing microtubules, wein the limit of a vanishing rescue rate the form
again use Eq(5) with a constant nucleation rate. For
. . - £(0)
model Il we only consider the catastrophe rate given in Eq. )]y = Lex _ leat (18)
(3). This again guarantees a nonlinear feedback of the dy- Po.s Ug,s '

namics of the tubuliri-dimers to the dynamics of the grow-
ing microtubules. The catastrophe raté®; may be given either by Eq3) or

Eq. (4) but in both cases the stationary tubuliconcentra-
Reduced model tion, denoted by:go), is determined self-consistently as de-

Similar to model I, model Il also becomes identical to the SCTibed below. The stationary sc_)lutiopgg allow an analyti-
model described by Eqé14) in the limit y—o. If we as- cal cglculgtlogw of the integrals in E@11), and a nonlinear
sume a very fast dissociation of oligomers into tubulin- €duation inc{® follows:
dimers,xy>1, we can neglect the intermediate steg. In
this case the source term in E@5b), xAc,i, can be re-
placed by the source in Eq15a, cf. y\fcafqdllpg,
which describes the direct decay of growing microtubules
into tubulind dimers. After replacingcy and settingy From this equation the stationary tubulin concentrati:{)%
= »\ in Eq. (8a), we again obtain with the help of the con- can be determined as a function of the overall concentration
servation law(16) the simple reduced model as described byof tubulin dimersc, and as a function of the other param-

Ug

0)_ Y7
Co— V="
fcat

. (19

1 1
Pl m(lﬂLﬂ)
cat

Egs.(14). eters. In Eq(19) the abbreviation for the velocity ratio
U
I1l. STATIONARY SOLUTIONS B= v_g (20)
S

A polymerization cycle with a stationary length distribu-
tion of microtubules and time-independent dimer concentrahas been introduced, and the respective length distributions
tions ¢, c4 or oligomer concentratios,; are one type of (9 andp!® follow for a given value ofc(”) via Egs.(18).
solutions of the model equations described in Sec. Il. For thishe stationary valueﬁo) for the reduced model, described by
stationary state, the various polymerization steps, such a8gs. (14), follows from Eq.(19) in the limit 3—0.
nucleation, assembly and disassembly of microtubules, as |, the range ofe much larger than the catastrophe rate
well as the regeneration of tubulthdimers are in a balanced £ the stationary tubulin-concentratiore(® becomes in-
state. Under certain conditions a stationary polymerization iﬁcat' !

b di . 81l H it b ependent of it, because all tubulindimers that are re-
observed in expenmenf . OWEVer, It may DECOME UN" 05504 during the depolymerization, are immediately regen-
stable against oscillatory perturbations if the initial tubulin

i trati i h h in Sec. IV erated to tubulirt-dimers. Both a large nucleation rateand
Imer concentratioie, IS largeé enougn, as shown in Sec. 1v. 4 large growth velocity, lead to a high consumption of

tubulint and, therefore, to a lower stationary concentration

A. Model | CEO). This tendency is illustrated by the difference between

Equations(6) are first-order linear differential equations the two curves in Fig. 2. On the other hand, large values of
with respect to the length and in the stationary case these the amplitude of the respective catastrophe rate, eitbef,
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act against long microtubules, which consist of many tubulin A. Model |
dimers and, therefore, enhance the densitis and c{?.

The length distribution of the growing respective shrinkingS
microtubules is determined hy, /f%;, which also depends
via the catastrophe rate on the concentratih.

We introduce small perturbations{"2 and c{™ with re-
pect to the stationary solutiop§” andc(® as determined
in the preceding section. With the ansatz

These tendencies become even more obvious if the linear Pg.s= P2+ P, (233
dependence of the catastrophe rate in @&g.is chosen for
the special case,=cy and Eq.(19) is expanded in the limit ct=c§°)+c§1), (23b
of small and large values ai. In both cases, we obtain the
simple formulas one obtains, after linearization of Eq$) and(11), the fol-
lowing set of linear equations describing the dynamics of the
113 ions:
g ( vyvg(1+ B) T o1 perturbations:
t —Cbo |\ T/ — )
f apiH=—(FQ+vgaNpP—pPf%, (249
ol apP=v. M+ QP+ p@1R, (24
cW=c,— f_g (a<f), (21b)
a o]
acM=—acH— yf dl[vgp{” + al (p{P+p)].
0
which reflect the described tendencies. (240
5. Model Il Here, f¢;; is the first-order contribution of an expansion of

_ . ~ the catastrophe rafig ;= f {2+ f{3+ - - - with respect to the
Stationary solutions for model Il can be calculated in apertyrbationc(® :

similar manner as discussed in the preceding section for

model I. The length distribution of growing microtubules is c@

again given by Eq(18) and the integral in Eq(17) can be fO= O (25)
calculated analyticallycy may be eliminated from Eq17) Ct

by using Eq(8a) with ¢;=0 and by setti(rg)g)gy= 7\. Thenthe  gince the first-order linear equatiof@4) have constant co-
nonlinear equation for tubulib-dimersc;™ takes the form  efficients, their solutions depend exponentially on time and

¢ may be written as
0) vphvg(1 1 1
CO_Ct = —+—+—].
f(0) a f(0)

cat cat

22
22 cW=Ae"'+c.c. (26)

(c.c. denotes the complex conjugat®ith this ansatz the
three equations in Eq24) can easily be integrated and the
Solutions for the growing and shrinking microtubules are
given by

Equation(22) is invariant under the permutatian— y. If «
and y become much larger than the catastrophe rate, th
stationary concentration{”) becomes rather independent of
both. In the limitsvs— in Eq.(19) and y— in Eq. (22),

we again obtain the concentratioﬁ) for the reduced model. ,,fg%)t ff:%)t o
No stationary solution is possible in the limit-0, because pgl =— Tex;{ ot— —I) ex% - —I ) —-1|A+c.c,
in this limit all tubulin-d dimers are stored in oligomers and Vgt Y Y (279
the polymerization cycle becomes interrupted.
M= —Vfé%)t exr{ t— @I) k exp< )
IV. THRESHOLD FOR OSCILLATORY POLYMERIZATION S VCio 7 Vg 1 Vg 2
Stationary microtubule polymerization becomes unstable o
against oscillating modes in the range of high tubulin dimer +K eXF<U—| A+tc.c. (270
concentrationg,, and the parameter range where this hap- S
pens is calculate_d by a Iinez_ar stability analysi_s. SFarting frO”Herein, we have introduced the abbreviations
the model equations given in Sec. Il, we derive linear equa-
tions for small perturbations with respect to the stationary £(0)
state, and such perturbations exhibit an exponential time de- k1:°—a‘,
pendence’'. For the exponential factar, we derive a non- o(1+p8)+ fé?t
linear equation from which both the critical dimer concentra-
tion co. and the critical frequencyw, for the Hopf U_f(c%)t
bifurcation are calculated numerically for various parameter kzzr, (28
combinations and in limiting cases also analytically. feart oB
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and the boundary condition in E¢7) requires a vanishing 0.06
integration constanK=0. The boundary condition for the
time-dependent part of the growing microtubulgsg, (| o 008
=0,;t)=0, is also fulfilled. According to the analytic expres- i 0.04
sions forp{" andp{" given in Eqs.(27) both may be elimi- g -
nated in Eq.(240. The remaining integral in Eq24¢) can S 0.03
be calculated analytically and the nonlinear dispersion rela- £
tion for o follows: 0.02
500 = i = I
0)_ (0) I i
a f o f o
1+0'(a'+a)G+W(1+ﬁ (;;’t )— (O;at & 0
feat featt o feart o § 300
(0) <
@ f £
x| 1+ 5 B 5 cat ) § 200
featt o featt o(1+B) § 100
=0, (29 0 . L . ! .
0 0.05 0.10 0.15
with a reduced parameter regeneration rate o.
Ct FIG. 3. The critical tubulin dimer concentratiazy, and the
G= yvu (30 critical oscillation frequencyw. are given at the threshold of the
g

Hopf bifurcation as functions of the regeneration ratefor two
values of8=v4/vs and for the constar® = 3000. The catastrophe
rate given in Eq.(3) has been used with the parameter valfies
=0.1 andc;=3.

for the catastrophe rate given in E®) and with

0
o
fyvug

S mination of the two unknown$(%, and w.. Having deter-

mined % numerically,co, may be calculated via Eq19).
for the rate given in Eq). After a few rearrangements, the

dispersion relation in Eq(29) can be written as a fourth- 1. Limiting cases for the rate in Eq. (3)
order polynomial in, For the limiting case8—0, B—», a—0, anda—»,
. 5 ) ) analytical expressions can be given for both the threshold
o"GB(1+p)+ o °Glaf(1l+ )+ f(1+38+ )] concentrationcy, and the Hopf frequency.. This is ex-

plained first for the catastrophe rate given by Esj.and for
the paramete6 given in Eq.(30). At threshold, one has
=iw, and two equations follow from the nonlinear disper-
sion relation in Eq(32) which determine the two unknowns

+ 0 GafQ(1+38+ %) +(B+2G102)(1+8)]

+ola(1+B)(1+ B+2G T + GO + )

0) (0)27 . ¢(0)_ w andf(%,. The critical initial concentration,, follows via
X(1+2B)]+afl2+2B+Gf ) 1+ et =0. 16 from Eq. (19).
(32) (8 a—. In this limit one obtains from Eq.32)

This polynomial describes the linear stability of the station- 1 1+ 8
ary solutions given by Eq918) and (19) completely and =, (333
they are unstable in the parameter range wheregthesth @G 1+8+p
rate becomes positive, Re{)>0. Keeping, for instance, all
parameters besides the dimer concentratipfixed, theneu- o= 1+8 (33b)

tral stability condition Re(o)=0 provides an equation for G

the critical dimer concentratiorcy,. For concentrations . . . ) )

larger than this critical valuegy™>cq., the stationary solu- Accordingly the critical tubulin concentration diverges as

tions are unstable. Coc* @2, Which agrees with the full numerical results shown
The smallest critical dimer concentrationg, for an os-  in Fig. 3, besides small logarithmic corrections. In this limit,

cillatory polymerization are required if the parametarsg,  the Hopf frequencyw, becomes independent efand with

andG take intermediate values, as discussed in greater detdficreasing values of3 it decreases slightly to a constant

below. At the threshold, the real part R§(=0 vanishes and Value w.~V1/G.

the imaginary part ofr is the so-called Hopf frequenay, (b) @—0. In this casan.~ y1/G also becomes indepen-

=Im(o). In this special case with a purely imaginarythe  dent of @« and the catastrophe rate vanishes 88~ a.

polynomial in Eq.(32) can be decomposed into its real and Therefore the critical tubulin concentration diverges accord-

imaginary parts, giving two coupled equations for the detering to Eq.(19) asco.~a 2.
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ook =T with g=fyvv,. Hence the critical tubulin concentration re-
L - G= 300 | quired for a Hopf bifurcation diverges &g . «.
& oosF -7 4 ~(b) a—0. In this limit one hasf{Q<a, and cocxa 2
> - s . diverges too.
S 006" . (c) B—0. For this limit, we obtain
=1 L
£ ooaf fo=(p", (369
250 1)\1/3
| wC:gl/GalIZ _ (36b)
8 200F B
o L
S 150 This confirms the importance of a finite ratio v 4/vs,
:g' - because the threshold diverges @+ 0, similar to the ca-
§ 100_‘ tastrophe rate given in E@3).
=4
8 50__ i 3. Traveling waves solutions
I e S A At the threshold of the Hopf bifurcation, the rate is
. e purely imaginaryo=iw., and the expressions given in Egs.
velocity ratio = VS/VQ (26) and (27) are oscillatory in time,
FIG. 4. The critical tubulin concentratiasy,. and the frequency cW=2A cog w.t) (373
w. are given at the Hopf bifurcation as functions of the ratio be- ! e
tween the shrinking and growth velocity of microtubules/v S (0)
=B, for =0.05 and for two different values @. Thec, de- p(l)z—lex% C—ml)[sin(wct)—sin{wc(t—llv M
pendence of the catastrophe rate as given in(Bghas been used g Ug Ug g
with the same parameters as in Fig. 3. (370
(c) B—0. In this limit, one obtains Sy f(c%)t
- . 1 _ .
gl)— - U—SEX% - U_gl ) [szlr(wct+q02)

B @2\ Y41\ V4 . B
0 \[6 o wc=(g) (/—3 @ T kasin{wc(t—1/vg)+ @1} ], 379
whereby the following abbreviations for the amplitudes,
The Hopf frequency diverges with increasing values of the

0
shrinking velocity asw.~v2*, in agreement with the nu- lZZAVfEa)‘ (383
merical results shown in Fig. 4. With this expression for WcCy
£(9), one obtains, via Eq19) for the critical initial concen-
tration, co.~ G/ B+ ¢¢In[f(G/B)?]. For medium parameter B VEQH+ 02 f 21+ p)?
values, this is essentiallyy.1/8 as indicated in Fig. 4. 1 FO24 (14 B)2 (38b)
In experiments, the shrinking velocity was always larger cat = e
g;zige?.e growth velocity, therefore the limit—« is dis _J(wiﬁ—f£%12)2+f£?t2w§(1+ﬂ)2 .
g 197+ (wsB)? |
2. Limiting cases for the rate in Eq. (4)
The tendencies for the parameter dependence of th%nd phases,
threshold for the Hopf bifurcation as discussed in Sec. w1+ B)
IV A1 are by far not a special property of the choice of the ©1=— a_rctar( C—O } (393
catastrophe rate in E@3). Therefore we consider the same f(ca)t
limiting cases as before for the catastrophe rate given in Eq.
(4) and withG as defined in Eq(32). wfQ(1+p)
(@ a—oe. In this limit one obtains from Eq32) pp=arcta W : (39b)
Cc cat

1/2
£(0)_ g(1+p) (358 have been introduced. The analytical expressionp&Brand
@ | w(1+8+8Y)] pY) indicate that the time-dependent contribution to the
length distribution of the microtubules includes homoge-
2 1a neous amplitude oscillations and waves with a wavelength
wc:[ag(1+ﬂ+ﬁ )(1+5)] , (350  wc/vg that travel to larger values of the lendthHence, the
B2 length distributionsp{’} depend on two different length
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scales, the decay length, /(% and the wavelength,/w, ' ' ' '
of the traveling waves. With the explicit solutions fof") o B G }
andp(", the phase of the oscillating part of the tubutin- g _3-_ —————————— ]
concentration relative to the phasecéf) as well as its os- aa;a | |
cillation amplitude is calculated via E¢Ba). E b |
§ L
4. Numerical results for the threshold of model | o
Since o is purely imaginary at the threshold of a Hopf
bifurcation,c=iw,, the dispersion relation in E¢32) can o
be decomposed into its real and imaginary parts, and from &
these two equations the critical concentratiopp and the é
frequencyw, may be calculated numerically as a function of 2
the parameters. The numerical calculations in this section are ?E’-
restricted to the exponential tubulin dependence of the catas- © I
trophe rate as given by EQ). 0 . ! . L .
The critical tubulin dimer concentratiazy, and the criti- 0 0.05 0.10 0.15
cal frequencyw, at the Hopf bifurcation are shown in Fig. 3 regeneration rate o

as functions of the regeneration rateand in Fig. 4 as func-

tions of the velocity ratio 18= Us/Uga whereby the reduced FIG. 5. In the upper part, the differences between the phases of
parameteiG has been chosen at the valugs- 3000 andG the oscillating contributions of the tubulgh- concentrationcy
=300, respectively. Sinc& includes a number of param- (S0lid and of the tubulirt ¢, as well as betweet.(t) and c,
eters, the curves in both figures represent a larger paramet{gashedl are shown as functions of the regeneration atdn the

set. In the limit of a vanishing regeneration and in the IirnitIower part the ratios between the amplitudes of the oscillating con-

Lo 1 1 . ;

of very large values ofr, where the regeneration process istrl?;’t'onsfé)) andc” (solid) as well as between the amplitudes Of
.. . L") andc;™’ (dashegl are shown. The rest of parameters are as in

much faster than any other process, the critical tubulin conl-:ig 3 t

centrationcy. diverges and, therefore, the Hopf bifurcation is = =

suppressed. In addition, both figures indicate that the small-

est values of the critical tubulin concentratiop, are ob-  ously as antagonistic steps or jam processes that favor oscil-

tained at intermediate values of the parameterg, andG.  lations.

The location of the threshold minima, however, depends on Since one has at threshald=i w,, pél) and p(sl) in Egs.

the actual values of the rest of the parameters. The frequengg7b) and (379 include both traveling wave contributions

o. becomes rather small in the limit—0, and for large proportional to exp—i(wt—kI)] with a wave numberk

values ofa, this frequency becomes independent of it, cf.= /v, that always travel towards larger lengths of the mi-

Sec. IVA L crotubules. The length distribution is exponentially decaying

_In Fig. 4 the threshold minimum is less pronounced thary, the length scale, /(). If this is large compared to the
e i withr o e s g VDN~ 2rugloc: 3. ot insance n e I,

) S . ) . >v4, th h kind of self- ing in th ti
in Sec. IV A 1. Accordingly, there is no Hopf bifurcation for Vg, NEN ONE Nas a Kind of sefi-averaging In the respective

the reduced model that follows in the lim@—0 as de- integrals and the Hopf bifurcation is suppres_sed. .
. : . A . The phase difference between the oscillations of tubitulin-
scribed in Sec. Il B 2. Hence, the dynamics of shrinking mi-

crotubules is one essential degree of freedom favoring osciFmddthe o_sk;ugakt)lons O_f trée tOtl"’(‘)l amount r?f polyme_rlzed tlL;bu'
lating microtubule polymerization. The dynamics of N described byl (t) in Eq. (10), is another experimentally

oligomers, as discussed in Sec. IV B, is an alternative degredccessible quantitj33]. The difference between the phases
of freedom that favors oscillations. of the oscillatory contributions ofy andc; as well as the
For large values ob the frequencyw, becomes large difference between the phasesldft) andc, are given in
too, and the oscillation period becomes much shorter thafig- 5. These phase differences as well as the ratios between
any relaxational dynamics qf; and c,. According to the the amplitudes of the fields, cf. lower part of. Fig. 5, are
quick shrinking, the lifetime of a depolymerizing microtu- calculated at the threshold of the Hopf bifurcation by using
bule vanishes and, therefore, the amplitude of the density dhe analytical solutions calculated in Sec. IV A 3.
shrinking microtubules is small toopsx1/vs. In other For large values ofy, tubulind is quickly regenerated
words, in the limit of large values of, the intermediate into tubulint and, therefore, the density becomes smaller
step of shrinking microtubules may be neglected, and th@s shown by the lower part in Fig. 5. In the opposite limit of
transition frompy, to tubulind dimers is effectively a direct Small values ofa, tubulint is consumed by nucleation and
process as explicitly assumed for the reduced model. If eithegrowth of microtubules, but the source, which is supplied by
the regeneration or the shrinking dynamics becomes too fashe regeneration of tubulid; decays and, therefore, one ob-
the Hopf bifurcation is suppressed. The two intermediatdains large values for the ratio between the amplitudesdf
steps, the depolymerization and the regeneration, act obvandc§l) as well as between the amplitudesLdt) andcﬁl).
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The decay of the ratio between the amplitude& @ and  with the common complex amplitud®and relative complex
cV is less obviousL®M=L{D+L{" has the two contribu- factorE that describes vi& =|E|e'¢d the amplitude rati¢E|
tions Lél’= yfzdll pél)=Kcos@ct+go;) and L& as well as the phase differengg between both fields. With

=y[odll pgl)zgcos@ctﬂpg). The two amplitudeyT and the solution for growing microtubules as given in EQ7a

. . _ - we can eliminatec{™, andp{" in Eq. (41b) and we again
B increase with the regeneration rate However, with in- ,pain from the resulting solubility condition a nonlinear dis-
creasing values af, the phase difference,— ¢g increases

. ! X persion relation for the exponential facter
as well up to unity, leading to an effective decay of the sum

L™ as shown by the lower part of Fig. 5. 1 o+ 20
The phase shifts afy andL(t) with respect to the phase | Go+ W) (o+ a+X)+01X( G+ (m—c(?)t)z) =0,
of c, are rather independent of the regeneration ratas o+fia fealotfea)

shown in Fig. 5. The absolute values of these shifts are in
gualitative agreement with the expectation as described in .
the following. At the maximum ofc, the catastrophe rate With G=Ci/(7\vgv). After a few rearrangements of this
takes its minimum and, therefore, since the nucleation an§duation, one obtains a fourth-order polynomial dnfor
the growth velocity are constarit(t) increases for a while, model Il as well,

up to the moment when enough is consumed, and the HOG+ o3 OG2f O+ a+t x) + o2F O 1+ axG

catastrophe rate increases again. Due to an increasing decay ©& cat

of microtubules, the maximum of the latter will also lead to +GfO2x+ O+ 2a) ]+ o[ F QO+ o+ y) + ax
a delayed maximum forcy. For large values ofa, the . . 0 0
amount of polymerized tubulin is nearly in antiphase with +f((:a)tzG{Za)(-i-f((:a)t(a-i-)()}]-i-féa)tax(Gf‘(:a)tz-l— 2)

respect toc;, which is also mentioned in Refl5]. The
slightly strongera dependence of the phase difference be-
tween L(t) andc; is mainly due to thea dependence of
shrinking microtubuleg,, because the relative phasepé*)
is nearly independent af (see also Sec. IV B

+fQ2(a+ x)=0, (44)

which determines the linear stability of the stationary poly-
merization for model Il. Again we are interested in the neu-
trally stable case, Re{) =0, which separates the stable from
the unstable regime. At the neutral stability point of the Hopf
B. Model I bifurcation one has.=Im(c), and Eq.(44) can be decom-
Here the stability of the stationary polymerization state ofposed into its real and imaginary parts. From these two equa-

model Il, described by{?, ¢V, andp!?, is investigated tions (9 and . are determined by standard methodg,

with respect to small perturbatios§”, c{"’, andp{"”. with ~ may be calculated via E¢22).

the ansatz ) .
1. Traveling waves solutions
_n(0 1
Pg= pg '+ p(g ), (408 At the Hopf bifurcation, the nonstationary part of growing
©0) L (1) microtubules is again described by the distribution given by
Ct,d=Cid T Cid (40D Eq. (37 and the fields,,; andcy are not in phase witk, ,

in general. The two fields may be written in terms of the

the equations for model Il are linearized with respect to thes%mplitude ratiE| and the relative phase, in the following
perturbations and one obtains the following set of linear dif-¢, -

ferential equations with constant coefficients:

(1)_
c;’/=2Acoq w.t), (453
apg ==t~ (FQ+veapy’, (410 1 c
- cV'=2A|E|cog wct+ ¢q). (45b)
get=—n\vy f dip{t+aclV, (41b) _ _ _
0 The amplitude ratidE| and the phasey can be determined
from the two coupled equationglb), and (41c), and they
o] . b
acP=— x| cW+cP+yr Jl) dil pgl)) —ac{M. are given by
e ) VT GG )1

02, 2
(1) is the first-order correction with respect to its value in aG(fear +oc)

the stationary state and it is given by Eg85).

The time-dependent contributions to the tubulimnd @e (02, 2
: : s : = — +os)—1]].
tubulin-d dimer densities are described by d arctar( fgg)t[G(fca‘ o)1l (46
1) o .. . .
cfV=Ae"+cc., (429 In a similar manner the oligomer densitfl may be
" t written in terms of an amplitude ratiF| and a relative
¢ =EA€"+c.c, (42b  phasep,; betweenc}) andc{V,
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cli)=2AF|cog wct+ i), 47 k]
with 80 3 /////x=01 ]
z 0081 -7 .
a’+ g S L /// |
|F|= |EJ, 3 -
® 004- 7 e
and
600
atan(¢q) + o 9
j=arctan ——— | 48 >
Foll ’E a—octan¢q) “9 g 400
The oscillatory contribution to the polymerized tubulin %
L™ can also be written as a harmonic function{® & 200
=2A|H|cosd+¢,). For both, the amplitude ratitH| and 8
the relative phase, , one obtains long expressions that are . .
not presented here. The phase shifts and the amplitude ratios % 0.05 0.10 0.15
between the oscillating fields are shown in Fig. 7 as func- )
tions of the regeneration rate. As discussed in Sec. IV A, regeneration rate o

the phasg)shlft of the polymerized tUbuml)(t) with re- FIG. 6. For model Il the critical tubulin concentratiag. and
SPeCt toct 'S_ rat.her 'ndependenF af, Wh‘?reas the phase_ of the critical frequencyw are shown at the Hopf bifurcation as func-
oligomer oscillations changes slightly with. A phase shift  tons of the regeneration rate and for two different values of the
m between the polymerized tubulin and oligomers is meagecay ratey of oligomers. The rest of the parameters a@e
sured in experiments, cf. Refsl2,34]. In this model this is  =3000, f=0.1, andc;=3.

only possible in the limit of a dissociation rate much

smaller than the regeneration rate independent o, cf. Sec. IVA 1.
The stability of oligomers and, therefore, the decay jate

depend very much on the available GTP: Increasing GTP
concentrations destabilize oligomers and increase the decay
At the threshold, one has again=iw., and from the rate y [7,11]. With increasing GTP concentrations, also the
imaginary part together with the real part of the dispersionvate o of the transition froncy to c, is enhanced. However,
relation in Eq.(44), the critical concentratiory, and the if the tubulin regeneration and the oligomer decay become
Hopf frequencyw,. may be calculated as functions of the too quick, an oscillatory polymerization is suppressed. In
parameters. Also for model Il we restrict our numerical cal-other words, if one increases and y beyond some mini-
culations to the catastrophe rate with the exponential depemum values, the threshold concentration for tubulin in-
dence given in Eq(3). creases too. Such a tendency for the GTP dependence of the
The critical tubulin concentrationy, and the critical fre- ~ oscillation is in agreement with the results reported from
quency o, at the Hopf bifurcation are shown in Fig. 6 as experiment§7,11,17.
functions of the regeneration rate and for two different With increasing values ok, tubulind is again quickly
values of the decay rate of O|igomex5 Whereby for the transferred by the regeneration process into tuUlJlIhEad-
reduced paramete® the valueG=3000 has been chosen. ing to a small amplitude rati{"/c(". Accordingly more
SinceG includes a number of parameters, the curves in bottiubulin is left to be stored i andc(j). Therefore, both
parts represent a larger parameter set. For a fixed finite valiecrease with larger values ef as indicated in Fig. 7. This
for y in the limit of a vanishing regeneratiom— 0, where  has to be compared with® for model I, where it decays as
the polymerization cycle is interrupted, and in the limit of a function of«, because the phase shift between the contri-
very large values ofx, where the regeneration process isbutions of the growing and shrinking microtubules changes
much faster than any other process, the critical tubulin contoo. For model 11, the relative phases are also rather indepen-
centrationc,, diverges similar to model | and, therefore, the dent of @, whereby due to the quick regenerationogfthe
Hopf bifurcation is suppressed. if is kept fixed at a me- relative phase betwear}?) andc{" is slightly decreasing.
dium value, the threshold cun®.(x) as a function of the
decay ratey for oligomers has a similar shape, as shown as
a function ofa in Fig. 6. The critical tubulin concentration The dispersion relation for models | and II, considered in
Coc also takes its smallest values at intermediate values of the preceding section, becomes equivalent in the lirgits
x andG, whereby the location of the threshold minima de- -0 and y—, and in both cases one obtains the same
pends on the actual values of the rest of parameters. With @ispersion relation
decreasing ratex— 0 of tubulin regeneration, also the fre- 5
guencyw, becomes small. On the other hand, for large val- *GfO+ o Gaf D+ 26102+ o] a(1+2G Y
ues of @, the tubulin regeneration is not anymore a rate 3 2 )
limiting factor and the critical frequency, becomes rather + GO+ T+ at Q2+ GO+ 10 =0, (49

2. Numerical results for the threshold of model Il

3. Reduced models
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- . T . T

e —— . OFs="feal — +F ——fg‘;)t +F +v4dFs.
o -2 - Ug
e | ] (51b)
3 3
5 -3f i
B 1 Both fields may be expanded with respect to the first two
] I ] spatial Fourier modes' "% (n=0,1),
s
o

Fo(l,y=B(t)+3[C(he ' +C* (e ™],  (52a

F(l,t)=D(t)+3[H(t) e  +H*(1)e ¥,  (52b

in order to remove the spatial dependence from E§%$).
Herein, the wave number is chosen at its value at the thresh-
old of the Hopf bifurcationk=w./v4. This ansatz leads to
a set of ordinary differential equations for the time-
0 s oo o5 dependent amplitudes(t),C(t),D(t),H(t) that are de-
scribed in the following.

regeneration rate o Due to Eq. (5 one has the boundary conditidfg(l
=0t)=0 that gives the relatiorCg=—B, with Re(C)
=Cg, between these two functions. AnsdB2g together
with Eg. (519 leads to the relation

amplitude ratio

FIG. 7. The phase differencdspper part and the amplitude
ratios (lower par} between the oscillating contributions to the
tubulin-d concentratiorc{" (solid), the oligomer concentratiozf,})
(dotted, and the total polymerized tubulih®)(t) (dashedl with

respect to the tubulibconcentratiorc{™) are shown as a function of v

th i _ IM(C)=C =—(fear— Q) (53
e regeneration rate. The other parameters afg&=3000 andy [ ko2 cat™ 'cat)s

=0.02. g

with the reduced paramet& as given in Eq(30) for model ~ and to the first-order differential equation i)
I and withG=c¢/(7\v4v) for model Il. This polynomial in
o always has negative growth rates, B0, and, there-

. : =(f© |- + B
fore, stationary solutions are always stable. cat™ feat

(54)

V. NUMERICAL METHOD FOR MODEL | Ansatz(52b) in Eq. (51b) gives the set of coupled differen-

The two differential equations for growing and shrinking fial €quations

microtubules in Eqs(6) are of first order with respect to the
length | of the microtubules and first order in time. A
straightforward spatial discretization of such first-order equa-
tions often leads to numerical instabilities. Especially, the
equation for shrinking microtubules, cf. Eb), has prob-
lematic stability properties. For this reason, we approximate __ Oy _

the solutions of Eqs(6) by a two-mode ansatz IHR=~TeaB~ fca‘HR kosHy, (55H

o
pg(l,t)y=exg — —I

Ug

feax ) v
ps(l,t):exr{—v—gl U_

AL 0
+B|-——— fga)tD (559
9

oD=f. |~
t_catvg

14

vg+Fg(' U) (509 OH = foaCi— 2 FOH, +koHg. (550
Ug
(50b) With the periodicl dependence given in Eq&2), the inte-
grals in Eq.(24¢ can be evaluated, and one obtains the fol-
lowing differential equation for the tubulindimer density:
where the first mode describes just the stationary solution
and the second one describes the oscillatory contribution. C=—yogK(t) — ayL(t)+ aco(1+ &) —ac;, (56)
This approximation becomes exact close to the threshold and
this ansatz leads with Eq&) to two differential equations
for F

+Fg(l,t) |,

S

where the coefficients are given by
g.s

v k(kB—48C))

” -
= (0 fea v—g+Fg)—vgﬁ|Fg, (513 K(t):fo dlpg(|,t)=g§+m, (57)
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dence of these phase differences may be calculated from the
formulas given in Secs. IVA 3 and IV B 1. In Figs. 5 and 7,
these phases are shown as functions of the regeneration rate
a. In Fig. 8 the initial concentration of tubulioy was cho-
sen very close to the threshotg, with £e=0.01. At this
value of the control parameter, the oscillations behave har-
monically and the agreement between the numerical solution
and the amplitude approximation is rather good, as described
in the following section. For larger values of the reduced
control parameter, the oscillations become anharmonic.

As already been mentioned in the Introduction, the length

distribution of filaments is a crucial difference between the
006k \ ] biochemical reaction discussed in this work and the common
N oscillatory chemical reactions. For model I, we show in Fig.
003k N i 8(d) at two different times and at=0.01 the superposition
~ of the length distribution of growing and shrinking microtu-
PN bules, cf.P(l)=pgy(l) +ps(l). The exponential decay of the
1600 0 2 Ie‘;ogth 60 envelope of the length distribution is described by EgZb)
and(370), with a decay rate 4/f'%;, and the modulation is
due to the traveling waves in the time-dependent contribu-
tion. The amplitude of the shrinking microtubules is rather
small for 3=0.1[cf. Eq.(370] and, therefore, the contribu-
tion to P(l) comes mainly from growing microtubules.

For model Il, a discretization of the length coordinate in
the equation for growing microtubules, cf. Hg), also pro-
vides a stable numerical algorithm. Hence, the nonlinear os-
cillatory solution can be obtained numerically without the
approximations as described for model | in EGZ) above.
The respective results are shown in Fig&)99c), where
the densitied ,c;, andcy; are shown as functions of time
for three different regeneration ratas For both values oé
in parts(a) and(b), the tubulin concentration is smaller than

1
0 400 800
time

1
1200

FIG. 8. For model I, the time dependence of the tubtilzen-
centrationc,(t), the polymerized tubulinyL(t), and the tubulird
concentratiorcy(t) is shown in partga), (b), and(c), respectively.
The parametere=0.01, «=0.01, 3=0.1 were used with the cor-
responding critical initial concentration,.=80.69. The reduced
control parameter is chosen at the vakre 0.01. In part(d) the
length distribution of the microtubule®(l)=py(l)+pg(l) is
shown at two different time$=876 (solid) andt=975 (dashedq,
where yL (1) takes its maximum and minimum, respectively.

L<t>=f:dntpga,twps(l,t)]

1 1
:é —+ —) +A[36%k?B+k*B—25%kC, the corresponding threshold value, but the absolute distance
Vg Us

Co— Coc to the threshold is equal. These transient subthresh-
old oscillations are remarkable, because the transient oscilla-
tions in experiments might be subthreshold ones, in contrast
and where the variablesh=[&%(5°+k?)?]"! and & tq the common interp_retation that_ the os_cillations are tran-
:fg%) vy have been introduced. The reduced control param—s'e”t due to _the.tubulnn-consumptmn during the microtu-
eter e = (Co— Coc)/Co. Measures the difference between thePule polymerization. o ,
tubulin dimer concentration, and the critical one,,. For ~_For the simulations shown in Fig. 9, a narrow length dis-
£>0, sustained oscillations occur but they are damped befibution pg has been used as initial condition. In such cases,
low threshold,e <0. For the numerical solution of model Il the tubulint concentration corresponds almost to the total
we use either the same approximation scheme, where oniyitiéﬂ concentrationco. Starting with such an initial condi-
the factors of the scheme take a different form, or in thetion, at first tubulint dimers are consumed during the growth
absence op, a direct spatial discretization provides also aof microtubules. This leads to a first maximum of the poly-
stable algorithm. The five differential equations for model I merized tubulinL, but the oligomers, the decay product of
in Egs.(54), (55, and(56) and the corresponding three dif- the microtubules, are negligible and as a consequence the
ferential equations for model Il are integrated numerically bydensities of tubulird and tubulint drop down too. But a
a second-order Runge-Kutta method with a time sMp  smallc, increases the catastrophe régg, and microtubules
=0.01. decay with a higher rate, which increases the density of oli-
The time dependence of the fields of model | are shown irgomers, etc. After a few such oscillations, the densities reach
Fig. 8 for one parameter set and these fields obviously havéheir stationary values for subthreshold concentrations. In the
different phases. The extrentmaxima of the polymerized case of a large regeneration rate the oscillation frequency is
tubulin L(t) and the tubulind concentrationcy(t) are de- much higher than for small regeneration rates and more os-
layed with respect to the extrema of the tubulibencentra- cillations are performed until the stationary values are
tion ¢,(t), a behavior that is already indicated by the reactionreached. The stationary value of the polymerized tubulin and
cycle shown in Fig. 1. At the threshold, the parameter depenef the oligomers is also much larger in péo) than in part

+6%(8°—k?)Hg—25%H, +(8°+k??D], (59
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a large amount of tubulib-has been used up, the catastrophe
ratef.,; increases very steeply, leading to a strong decay of
the microtubules at all lengths. 1 ; drops down again, the
low density of long microtubules grows further with a con-
stant velocityv4 and short microtubules are nucleated at a
higher density. This leads to a step in the distribution that
travels with the growth velocityy to larger values of.
Therefore, far beyond the oscillatory threshold, the tempo-

rally anharmonic behavior af; leads in this manner to the
o steplike length distribution of the microtubules.

VI. AMPLITUDE EXPANSION

Here we focus on a semianalytical treatment of the oscil-
lating polymerization slightly beyond its onset. The interest-
ing question here is whether the bifurcation to these oscilla-
tions is continuous (supercritical or discontinuous
(subcritica). In physical systems, Hopf bifurcations are
mostly subcritical[27,35, but for the models discussed in
_ ~this work we always find a supercritical one. This is advan-

FIG. 9. For model Il the time dependences of the polymerizediageous, because for a supercritical Hopf bifurcation a semi-
tubulin 7L (solid), ¢, (dashed andc,; (dotted are shown below  55\vtical treatment is possible. The appropriate framework
the Hopf bifurcation(see Fig. § for «=0.0036 in(a) and fora g tha yniversal amplitude equation of oscillatory fields, cf.
=0.08 in(b) with an initial concentratiort,=70. The correspond- Eq. (1). This equation will be derived in the present section
ing critical concentration for both values efis cy.=134.15. The from the basic reaction equations of microtubule polvmeriza-
stationary value of the tubulid-concentration is{”=2.465 in(a) ion q poly
and(;:g:;: 34'3’.35t.i”(bt)|'1 In ﬁc)léh:it"geoge?ende?(c; 'ti Shlownthbe' The perturbation analysis employed for the derivation of
yond the oscillation thresho =0.01. In par e leng . . ) ) .
distribution of the growing microtubulegy(l) is plotted at three th(l) IS an expanS|Ic|)n of tlhe jomt'?nﬁ of th(.e”baS'C equa.tlljons
different times. Both in(c) and (d) the initial concentration i, W't respect to small amplitudes ,0 the oscillatory contri _u'
=80 and the critical tubulin concentration &,=65.97, which  t10Ns[27,28. As a small perturbation parameter, the relative
corresponds to the value=0.21 for the reduced control parameter. difference between the actual tubulin concentratignand
The maximal length of the growing microtubules has been chosef€ critical tubulin concentrationy, is introduced,
as 124/t In all parts, the rest of the parameters are0.01,
x=0.01,v4=0.1.

RS NN T Y
= kS Y n 5
-/ '\v/ v "\.// 2V - N

1 1 1 =
0 800 1200 1600 0 20 40 60 80

time

1
0 400 100

N (59
Coc
(), whereas the stationary value for the tubulidimers re- ) . )
mains nearly constant. The reason is the low derjip the A Signature for thet symmetry of the oscillatory behavior
case of large values af. [27,28 is the power law for the oscillation amplitudé
Far beyond the threshold of the Hopf bifurcation, the os-~ v&. Accordingly, the solutions of the basic equations at the
cillations become anharmonic as shown in Figz)9Hereby  threshold are expanded with respect to powers/ef
the oscillations of the total polymerization and of their decay
product,cyi, are nearly in antiphase, similar as in experi-
ments described in Reff7]. At the threshold, a phase differ- ISR )
ence ofr was only possible in the limit of large regeneration Where the vector notation= (p{’ ,p{ ,c{?) is used with
ratesa and for a much smaller dissociation rage If we  j=0,1,2,3. The components af!) differ by a factor ofy/e,
consider initial concentrations that are much larger than theuch as/sc{¥=c{", etc. The components af® describe
corresponding critical concentration, the phase shifirdfe-  the stationary microtubule polymerization as given in Sec. IlI
tweenL (t) andc,;(t) is also possible at intermediate values and the components af®) describe the linear oscillatory

of y anda. solutions that may be written at the threshold in the follow-
In Fig. 9(d) the distribution for growing microtubules ing form:

py(1) is shown for model Il at three different times. The
reduced control parameter=0.21 is rather large compared
to its value in Fig. 8, and the curves indicate that the length
distribution of microtubules is not described anymore by harHereu, includes the amplitude ratios between the fields,
monic traveling waves as in the vicinity of the bifurcation. p{", p{" at the threshold angzB=A as explained below.

As long as the tubulin-density is large and the catastrophe Close to the threshold, one has B¢-e<1, and the
rate small, microtubules grow with a constant veloaity linear solutionu®~e“t grows or decays only by a very
and only a few of them experience a catastrophe. During thismall amount during one oscillation periodr2w.. These
period, a plateau in the length distribution is built. But aftertwo disparate time scales near the threshold, that of the os-

u=u@+ VM 4 gu@ 4 £32y(3) 4 O(&?), (60)

uM=Buge'“'+c.c. (61)
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cillation period (<27/w.) and that of growth and decay

(e<1/e), may be separated within a perturbation expansion 0.03
by introducing a slow time scal@=e¢t [27,2§. The fast

time scale is included in the exponential functigfi<', and 0.02
the other one will be described by a slowly varying ampli- g~

tude B(T). Accordingly, the linear solution near threshold

may be written as 0.01 |
u(t, T)=B(T)uee' “c+c.c. (62 o—+—t+—+—F+—+—"F+—+—+—
In order to differentiate this product of time-dependent func- 301 1
tions, instead of applying the chain rule of differentiation,
one may replace this operation by the following su#p: c

—di+edr. Here g, acts only on the fast time dependence
occurring in the exponential function aidg acts only on the
amplitudeB(T).

Using this replacement and tkeexpansion ofi the basic
equations given in Sec. Il can be ordered with respect to
powers of/e. In this way we obtain a hierarchy of partial
differential equations, which we need up @(¢*?). The
whole procedure is described in greater detail in the Appen- @
dix. The amplitude equation follows from a solubility condi-
tion for the equation at ordé(£%?) and it has the following
form:

TodtB=(1+ia)B—g(1+ic)|B|?B. (63

. . . . . 300
7o IS the relaxation timeg andc are the linear and nonlinear

frequency shifts, respectively. The nonlinear coefficgde-

termines the bifurcation structure. Fgr-0 the bifurcation is
supercritical(steady and forg<<0 the bifurcation is subcriti-
cal (unsteady. For the coefficientsy, a, g, andc, one ob- 100

tains long expressions in terms of the reaction constants of 0 ' 0'05

%o 200

I 1 1
0.10 0.15 0.20

the basic equations, which have been calculated by using

computer algebra. The respective formulas are not presented, regeneration rate o

but the parameter dependence of the coefficients is shown in

Fig. 10 for model | and in Fig. 11 for model Il. FIG. 10. The coefficientsy, a, g, andc of the amplitude equa-

Rescaling the tim@ =t and amplitudeA= \eB back to  tion (64) are shown for model | as functions of the regeneration rate

the original units yields the amplitude equation « and for two different nucleation rates=0.01 (solid line) and v

=0.04 (dashedl For the rest of the parameters, the valugs
ToﬂtA=s(1+ia)A—g(1+ic)|A|2A, (64) =0.1, 8=0.1, f=0.1, andc;=3 have been chosen.

as introduced in Sec. |. This equation has simple nonlinear-0. Neglecting in Eq(64) the contributions due to the cubic

oscillatory solutions of the forrh=Fe'™, with an ampli-  nonlinearity, one obtains from its linear part the dispersion
tudeF and a frequency) as follows: relationo=¢(1+i(a)/7o. This formula gives the relaxation
time 7o and the linear frequency dispersienin terms of
F= \ﬁ derivatives of the growth rate with respect to the control
g’ parametee: 7,=[dRe(0)/de] * anda= 190 Re(o)/de. If
¢ is expressed in terms of the dimer denggy cf. Eq.(59),
1 ,  a—¢C then both quantities may also be written in terms of the de-
Q= T—O(sa—ch )= PR 65 jivatives with respect t@,,
() describes the deviation of the oscillation frequency from 1 dlm(o)
the critical onew. 0= . "Ra o)/ agc. & CocTo™ o (66)
We Cocd Re(a)/ dcy dco

The linear coefficientsy anda of Eq. (64) may directly
be calculated from the dispersion relation in £29) or Eq.  whereby both derivatives are taken at the threshold concen-
(44) in the following way. The solutioA=0 of Eq.(64)  tration c,.. The dispersion relations(e), as obtained on
corresponds to the stationary polymerization described ifhe one hand by the amplitude equation and on the other
Sec. lll, which is stable in the rang@<0 against small hand by So|ving Eq(zg) or Eq(44), both have to reproduce
perturbationsA~Fe’" (with F</e[) and unstable foe  the growth or decay dynamics of small perturbations with
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FIG. 12. The amplitude of the oscillations as a function of the
reduced control parameterand for two different nucleation rates
v. The solid line is the result of the amplitude equation and data
points have been determined from simulations as described in Sec.
V. The parameters that have been used grel, «=0.01, vq
=0.1, 8=0.1,f=0.1, c;=3.

Coc(@) varies too, the variation of the oscillation amplitude
with « is much less wheng¢ is kept constant. According to
the sign of the nonlinear coefficiem; the oscillation fre-
quencyw.+{) decreases with increasing valueseof The
results in terms of the amplitude equation are in fairly good
agreement with the behavior of the full numerical solution of
the basic reaction equations.
— A determination of the bifurcation structure by numerical
- simulations of the basic equations is error prone compared to
20014 - 7 the results of perturbation calculation described here. Be-
N—m T [ sides the lower accuracy, parameter studies such as in Figs.
0 005 0.10 0.20 10 and 11 are much more time consuming with numerical
simulations.
Close to threshold, the advantages of the perturbation cal-
FIG. 11. The linear and nonlinear coefficients of the amplitudeculation are obvious. However, it ia priori unknown to
equation(64) are shown for model Il as functions of the regenera-Which & range the amplitude equation appro&6H) applies
tion rate @ and for two different nucleation rates=0.01 (solid) quantitatively. For some systems the amplitude equation is
and v=0.04 (dashedl For the rest of the parameters the valges valid in a rather large range of the control parametebut
=0.01, f=0.1, ¢;=3 have been chosen. for other systems its validity is restricted to very small values
of it, cf. Ref.[27]. In order to check this for our models of
respect to the stationary polymerization. Therefore, the coefnicrotubule polymerization, we compare in Fig. 12 the
ficients 7, and a of the amplitude equation can directly be variation of the oscillation amplitude af® with the control
calculated via Eq(66) from the numerical solutions of Eq. parametee as obtained by the numerical solution described
(29) or Eq. (44). in Sec. V and by the solutiod=\c/g of the amplitude
One aim of the amplitude expansion is the determinatiorequation for two different values of the nucleation rateAt
of the type of the Hopf bifurcation. For two different nucle- larger values of the control parameter 0.1, the difference
ation ratesy=0.01 andr=0.04, the variation of the nonlin- between the results for the numerical solution and the ampli-
ear coefficientg as a function of the regeneration rateis  tude equation is still less than 8%. For model Il the devia-
shown for model | in Fig. 1Qtop) and for model Il with  tions are larger between the amplitude determined by the
oligomer dynamics in Fig. 11. In both casgdehaves rather amplitude equation approach and the numerical solutions
similar and is positive for the models investigated in thiswith the ansatz in Eq952). However, when we solve the
work. Therefore the Hopf bifurcation is supercritical. In Figs. equation for growing microtubules, cf. E(R), numerically
10 and 11, the nonlinear coefficiegtincreases at first with by discretization of the length coordinate, the deviations be-
the regeneration rate and reaches a maximum in a range come smaller.
where the threshold concentratiog.(«) takes its minimum. For both models, the linear coefficieng and the nonlin-
It should be mentioned that, for a given value of the con-ear coefficientg,c do not differ very much from each other.
trol parameters, a large value ofy corresponds to a small However, the linear frequency shitincreases in model I
value of the oscillation amplitude. Since the thresholdfor large regeneration rates, whereas for model | it de-

300

1
0.15

regeneration rate o
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creases. Nevertheless, in both models the nonlinear fréionary state, transient oscillations occur. Therefore, the tran-
quency correction due to the valuesmis much larger than sient character of the microtubule oscillations observed in an
the linear correction due ta, c>a. experiment with an enzymatic regeneration process for GTP
Whether the bifurcation to oscillatory polymerization is [11], could have, according to the results described in this
also supercritical in experiments under stationary regenerayork, its origin in a too low tubulin concentration. A higher
tion conditions is an open question. Therefore an experimenypulin concentration or an appropriate regeneration rate of
tal determination of the bifurcation type Would_be an impor-GTP and a different lifetime of oligomers could lead, in a
tant test for the reduced models investigated in this work. gimilar experiment, to persistent microtubule oscillations.
_ The variation of the other coefficients with the regenera- o yransient oscillations observed in other experiments,
tion rate « provides further contact between the model pa-ne common interpretation is as follows. During the micro-

rameters and experimentally measurable_ quantities. The pgyp, ;| polymerization in experiments, the available GTP is
r;xm(;atgrs C’h a, and go ][nay tl)le deterbmmed (Si LOJ(ISYVS' used up and the oscillations last only for a few periods. If
_tuet}:':g the QTOWt of sma pertur atlo(gst N GTP is continuously supplied, the simultaneously increasing
=e*'"0, by plotting the logarithmet/7oxIn(¢™) as a func-  5nt of GTD inhibits various reactions steps and slows
tion of time and for different values af, the relaxation time down the reaction cycle. The results shown in Figs) 8nd

7o May be determined. In a similar mannannay be deter- 9(b) indicate that oscillations may occur as a transient be-

mined by studying the frequency of a perturbation far bemwcause either GTP is used up or the tubulin concentration has

Its nonllnear saturatllon'amplltude. If the perturb.at|on Satu_only a subthreshold value. Accordingly, there may be several
rates finally, the oscillation frequency of the nonlinear solu-

tion changes withe as indicated by Eq(65). From thisz reasons for_ transient ospillations in experiments. Either the
dependence the nonlinear coefficienhay be extracted. An initial tubulin cgncentranon has a subthr.eshold value, the
experimental determination of these coefficients, as dedecay rate of oligomers and the regeneration rate for GTP do
scribed, would be a further test of the basic model equationd!©t have their optimal values, which would explain transient
oscillations in experiments with a regenerative enzyme sys-
tem, or the reaction conditions are not constant, because GTP

ViI. SUMMARY AND CONCLUSION is used up. In the latter case the available tubtliiecreases

Two reduced models that capture oscillating microtubulevith time and the microtubule polymerization decays.
polymerization and the length distribution of the microtubule In anin vitro experiment with constant reaction condi-
filaments, as described in Sec. Il, have been analyzed. I#ons, the threshold of oscillations might be measured by
both models, the complex biochemical reaction steps of miincreasing the tubulin dimer concentration by appropriate
crotubule polymerization are described by a few steps, whiclsteps. Immediately after each step, transient oscillations
have been identified in experiments to be important. Themight occur, but the threshold is only crossed when the os-
focus on a few essential degrees of freedom leads to sonwllations persist over a long time.
simplicity of the models that allows, for instance, a deriva- In order to avoid numerical instabilities during long time
tion of analytical expressions for the threshold and the oscilsimulations of the reaction equations, including Ep), we
lation frequency at the Hopf bifurcation. Such analytical re-use analytical approximations for the length dependence of
sults make trends as functions of the reaction rates morthe microtubule distributions as described in Sec. V. This
easily visible. Some of these trends may be tested in experstable numerical scheme can be generalized in future work to
ments and some of the reaction constants may be measurexh effective algorithm for dealing with microtubule polymer-

At threshold, also analytical expressions could be derivedzation in one and two spatial dimensiof6], in order to
for the temporal evolution of the concentrations and theinvestigate spatial patterns occurring during polymerization
length distribution of microtubules. These provide a detailedbf microtubuleq10,24]. The respective extension of the am-
picture of the temporal variation of the fields, their relative plitude equation may also lead to interesting insights.
phases, and the amplitude ratios between them. The formula Microtubule filaments at a high density show an isotropic-
for the length distribution is especially instructive, cf. Eg. nematic phase transitidi22], similar to what has been ob-
(37b); it describes a superposition of amplitude oscillationsserved forF-actin filamentg36]. Since the early theory of
of the distribution and traveling waves, where the waves alOnsager{37], this transition for rods in a solvent is a well
ways travel towards larger lengths. This qualitative behaviounderstood phenomendB8]. For a monodisperse distribu-
of the length distribution during oscillatory polymerization is tion of filaments of fixed length, i.e., without polymerization
rather independent of the respective model and is a rath&inetics, many aspects of the isotropic-nematic transition
general feature. A few snapshots of the numerically generhave been understood. For polydisperse rod mixtures, some
ated distribution far beyond threshold are shown in Fi§).9 aspects of the isotropic-nematic transition can be considered
The distribution includes still traveling waves, but far be-to be understood tof89]. The effects of nucleation, growth
yond threshold, these behave rather anharmonic. of flaments, and the decay of filaments on the isotropic-

For stationary reaction conditions, as assumed in thisiematic transition are not known at present and one may
work, Fig. 9 shows a remarkable result. In padsand (b) expect interesting phenomena related to this kingis.
of this figure, a subthreshold concentration for tubulin wasThe effect of oscillating microtubule polymerization on the
assumed, i.e.¢p<cqy., and in both cases the final state is isotropic-nematic transition is also completely unexplored at
stationary polymerization. However, on the route to the stapresent and will be investigated in forthcoming wofRS].
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2 Ct 9
APPENDIX: AMPLITUDE EXPANSION FOR MODEL |
2 2 2

For model | and the catastrophe rate given in &), the o=~ 7[ difogp{?+ al (pP)+p{) ]+ aco.— acf?.

major steps of the derivation of the amplitude equaiibn (A4c)

are described in this appendix. Since we neglect the rescue of

shrinking microtubulesf,.s.=0, the only nonlinear term in  With the solutions of the equations at the previous oed&

the basic equations of model | is the proddigf,(c;)py in  which are already given in Sec. IV A 3, the equations at or-
Eq. (6). At first we expand the concentratioms,co and  dere have to be solved. These solutions have the following
length distributiongy s with respect to deviations from their form:

stationary value at the threshold for oscillation, such as, for

instance, for the tubulih- concentration, i.e.,c;—c{® c?=Ag+Aexp2iwg(t) +c.c., (A5a)
=JecW+ec{®+. ... Note that the fields having tildes dif- 0 ,
fer just by a power offe from the fields without tildes as pP=e" fGallvg(By(1) +[By(1)ed @ +c.cly, (ASb)
introduced in Sec. IV, cf. {(g)ic’=c{), etc. In order to , 0 ,
simplify the notation of this appendix we drop the tilde and p@=e~"@a{Dy(1) +[D,(1)e¥ e +c.cly, (A5Q)

the expansion of the catastrophe rate takes the form ) o
whereby the expressions for the coefficiefits A,, B;, and

foar=fQ+e12f M4 e+ 632431 .. (A1)  Dj are rather lengthy in terms of the coefficients of the so-
lutions at orders*? and are not given here.
whereby the coefficients of this expansion are The equations at the next higher ordéf* are
c D4 503 ()(3)() 3 S
1 3)_| £(0 0 3)_ 3
9=-1Q% maa a1 0o |
(De(2) ) / (D)
1(c @ —[f(o)ct Ct fcat(C ) lp(o)
(2) — £(0) - cat 2 6 | ¢ 9
fcat fCat 2( Cs ) Cs ' (AZb) (o f
(2) 0) / (1)
c f C;
o) "t cat 1
3 0 W@ ¢ 1 (cB3 [fc(:a)t ¢ 2 ( c ) IO( )
S - el f
¢ G 6l¢ o
- . O p@ (A6a)
Collecting in Egs.(6) and (11) the contributions to the Ct
ordere'2, we recover the linear equations given in Sec. IV: (3)
e 9 p(”+ﬂtp§)=< f&%)t Py + g v p“’)
AP =10 pP~ QP —vgpy, (A3
C(1)(:(2) £O) (e
(ot ~t  ‘cat (0)
(1) cat C2 6 ( Ct ) p
p) p(l)—_f(o) p(0)+f(0)p(1)+v apd,  (A3b) f
c® 19 (cM)?
o2t Ccat (1)
1 - 1 1 1 1 - f 2 Cf ’
He=— [ " alrogpP+ el 0§+ p)) - acfh. o
f(o) p?, (A6b)

(A3c) cat c

At order g, we obtain the three equations
orcP+ g,c®=— yf difvg p(3)+ al (p83)+ p{)]1—acl®.

(2) (1)
apP= ( f<0> p(O) fOp@—y 5p? fg;)t - p() (A60)
£(0) [ D) The two fieldsp!® andp{®) have to be calculated explicitly
Cat(c ) p(0)1 (Ada) at this order from Eqs(A6a) and (A6b) as well. With both
2\ ¢ g solutions, the integral on the right hand side of E&gc) can
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be calculated. EquatiofA6a) and (A6b) include both con-
tributions proportional toe'ct and e% !, but only the
single-harmonic terms are relevant in E46c¢). The coeffi-

PHYSICAL REVIEW E67, 021903 (2003

automatically, because it reproduces the threshold condition,
and the rest provides the amplitude equation with all the
coefficients now given in terms of the reaction rates of the

cient of e “ct in Eq. (A6c) must vanish. Part of it vanishes basic equations.
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